

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF
Approximation
Theory

www.elsevier.com/locate/jat

Journal of Approximation Theory 191 (2015) 46-57

Full length article

Distribution of interpolation points of maximally convergent multipoint Padé approximants

H.-P. Blatt^{a,*}, R.K. Kovacheva^b

^a Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, 85071 Eichstätt, Germany ^b Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Acad. Bonchev Str. 8, 1113 Sofia, Bulgaria

> Received 23 December 2013; received in revised form 1 April 2014; accepted 10 April 2014 Available online 19 April 2014

> > Communicated by Guillermo López Lagomasino

Dedicated to the memory of Andrei A. Gonchar and Herbert Stahl

Abstract

The paper investigates the distribution of interpolation points of m_1 -maximally convergent multipoint Padé approximants with numerator degree $\leq n$ and denominator degree $\leq m_n$ for meromorphic functions f on a compact set $E \subset \mathbb{C}$, where $m_n = o(n/\log n)$ as $n \to \infty$. It is shown that the normalized counting measures (resp. their associated balayage measures onto the boundary of E) converge for a subsequence in the weak* sense to the equilibrium measure μ_E of E if the multipoint Padé approximants for one single function E converge exactly in E measure on the maximal Green domain of meromorphy $E_{\rho(f)}$.

MSC: 41A20; 41A21; 30E10

Keywords: Padé approximation; m₁-maximal convergence

1. Introduction

Let E be a compact set in $\mathbb C$ with connected complement $\Omega = \overline{\mathbb C} \setminus E$. The set Ω is called regular if there exists a Green function $G(z) = G(z, \infty)$ in Ω with pole at ∞ satisfying

E-mail addresses: hans.blatt@ku-eichstaett.de, hans.blatt@ku.de (H.-P. Blatt), rkovach@math.bas.bg (R.K. Kovacheva).

^{*} Corresponding author.

 $G(z) \to 0$ as $z \to \partial \Omega$. Then

$$\lim_{z \to \infty} (G(z) - \log|z|) = -\log \operatorname{cap} E,$$

where cap E is the logarithmic capacity, and cap E>0 since Ω is regular. We define by

$$E_{\rho} := \{ z \in \Omega : G(z) < \log \rho \} \cup E, \quad \rho > 1$$

the *Green domains* and set $E_1 := \operatorname{int}(E) = E^{\circ}$. If Ω is regular, then the equilibrium measure μ_E of E exists. We denote the boundary of E_{ρ} by Γ_{ρ} .

For $B \subset \mathbb{C}$, we denote by \overline{B} its closure and by ∂B the boundary of B and we use $\|\cdot\|_B$ for the supremum norm on B. Moreover, let C(B) be the class of continuous, complex-valued functions in B, and A(B) (resp. M(B)) represents the subclass of functions that are holomorphic (resp. meromorphic) in some open neighborhood of B.

Given $n, m \in \mathbb{N}_0$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, let $\mathcal{R}_{n,m}$ be the collection of the rational functions

$$\mathcal{R}_{n,m} := \{ r = p/q : p \in \mathcal{P}_n, \ q \in \mathcal{P}_m, \ q \not\equiv 0 \}$$

where \mathcal{P}_n (resp. \mathcal{P}_m) denotes the set of algebraic polynomials with degree at most n (resp. m).

If $f \in C(E) \cap \mathcal{A}(E^{\circ})$ is not an entire function, then there exists a maximal $\rho \geq 1$ such that f has a holomorphic continuation to E_{ρ} . If $\rho > 1$, then a sequence of polynomials $p_n \in \mathcal{P}_n$, $n \in \mathbb{N}$, is said to *converge maximally* to f on E if

$$\limsup_{n \to \infty} \|f - p_n\|_E^{1/n} = \frac{1}{\rho}.$$
 (1.1)

(Walsh [17]). Moreover, Walsh proved [17, Corollary on p. 81, section 4.7] that

$$\limsup_{n \to \infty} \|f - p_n\|_{\overline{E}_{\sigma}}^{1/n} = \frac{\sigma}{\rho}, \quad 1 < \sigma < \rho, \tag{1.2}$$

for maximally convergent polynomials. Examples for such maximally convergent polynomials are best uniform polynomial approximants to f on E. Another example are interpolating polynomials p_n to f with respect to \mathcal{P}_n for particular choices of point sets

$$Z_n: z_{0,n}, \ldots, z_{n,n} \in E \quad (n \in \mathbb{N}).$$

In the case that these points are not pairwise distinct, we use Hermite interpolation. Given the normalized counting measure of Z_n , i.e.,

$$\tau_n(B) := \frac{\#\{z \in Z_n : z \in B\}}{n+1},$$

it is well known that p_n will converge maximally to f on E if the measures τ_n converge in the weak* sense to the equilibrium measure μ_E of E (Walsh [17]).

Conversely, Grothmann [5] obtained the following result:

If $f \in \mathcal{A}(E)$ is not entire and $\{p_n\}_{n \in \mathbb{N}}$ is a sequence of maximally convergent polynomials interpolating on the sets $\{Z_n\}_{n \in \mathbb{N}}$, $Z_n \subset E$, then there exists a subset $\Lambda \subset \mathbb{N}$ such that

$$\widehat{\tau_n} \xrightarrow[n \in \Lambda, n \to \infty]{} \mu_E,$$

where $\widehat{\tau}_n$ is the balayage of τ_n onto the boundary of E.

Download English Version:

https://daneshyari.com/en/article/4607050

Download Persian Version:

https://daneshyari.com/article/4607050

Daneshyari.com