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Abstract

Let E be a compact set of positive logarithmic capacity in the complex plane and let {Pn(z)}∞1 be a
sequence of asymptotically extremal monic polynomials for E in the sense that

lim sup
n→∞

∥Pn∥
1/n
E ≤ cap(E).

The purpose of this note is to provide sufficient geometric conditions on E under which the (full) sequence
of normalized counting measures of the zeros of {Pn} converges in the weak-star topology to the equilibrium
measure on E , as n → ∞. Utilizing an argument of Gardiner and Pommerenke dealing with the balayage
of measures, we show that this is true, for example, if the interior of the polynomial convex hull of E has
a single component and the boundary of this component has an “inward corner” (more generally, a “non-
convex singularity”). This simple fact has thus far not been sufficiently emphasized in the literature. As
applications we mention improvements of some known results on the distribution of zeros of some special
polynomial sequences.
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1. Introduction

Let E be a compact set of positive logarithmic capacity (cap(E) > 0) contained in the
complex plane C. We denote by Ω the unbounded component of C\E and by µE the equilibrium
measure (energy minimizing Borel probability measure on E) for the logarithmic potential on
E ; see e.g. [12, Chapter 3] and [13, Section I.1]. As is well-known, the support supp(µE ) lies on
the boundary ∂Ω of Ω .

For any polynomial pn(z), of degree n, we denote by νpn the normalized counting measure
for the zeros of pn(z); that is,

νpn :=
1
n


pn(z)=0

δz, (1.1)

where δz is the unit point mass (Dirac delta) at the point z.
Let N denote an increasing sequence of positive integers. Then, following [13, p. 169] we

say that a sequence of monic polynomials {Pn(z)}n∈N , of respective degrees n, is asymptotically
extremal on E if

lim sup
n→∞, n∈N

∥Pn∥
1/n
E ≤ cap(E), (1.2)

where ∥ · ∥E denotes the uniform norm on E . (We remark that this inequality implies equality
for the limit, since ∥Pn∥E ≥ cap(E)n .) Such sequences arise, for example, in the study of poly-
nomials orthogonal with respect to a measure µ belonging to the class Reg, see Definition 3.1.2
in [14].

Concerning the asymptotic behavior of the zeros of an asymptotically extremal sequence of
polynomials, we recall the following result, see e.g. [10, Theorem 2.3] and [13, Theorem III.4.7].

Theorem 1.1. Let {Pn}n∈N , denote an asymptotically extremal sequence of monic polynomials
on E. If µ is any weak-star limit measure of the sequence {νPn }n∈N , then µ is a Borel probability
measure supported on C \ Ω and µb

= µE , where µb is the balayage of µ out of C \ Ω onto
∂Ω . Similarly, the sequence of balayaged counting measures converges to µE :

νb
Pn

∗
−→ µE , n → ∞, n ∈ N . (1.3)

By the weak-star convergence of a sequence of measures λn to a measure λ we mean that, for
any continuous f with compact support in C, there holds

f dλn →


f dλ, as n → ∞.

For properties of balayage, see [13, Section II.4].
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