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Abstract

The aim of this paper is to prove a quantitative extension of Shapiro’s result on the time–frequency
concentration of orthonormal sequences in L2

α(R+). More precisely, we prove that, if {ϕn}
+∞

n=0 is an or-

thonormal sequence in L2
α(R+), then for all N ≥ 0

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


≥ 2(N + 1)(N + 1 + α),

and the equality is attained for the sequence of Laguerre functions. Particularly if the elements of an or-
thonormal sequence and their Fourier–Bessel transforms (or Hankel transforms) have uniformly bounded
dispersions then the sequence is finite.

Moreover we prove the following strong uncertainty principle for bases for L2
α(R+), that is if {ϕn}

+∞

n=0
is an orthonormal basis for L2

α(R+) and s > 0, then

sup
n

x sϕn
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= +∞.
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1. Introduction

A Fourier uncertainty principle is an inequality or uniqueness theorem concerning the
joint localization of a function and its Fourier transform. The most familiar form is the
Heisenberg–Pauli–Weil inequality. To be more precise, let d ≥ 1 be the dimension, and
let us denote by ⟨·, ·⟩ the scalar product and by | · | the Euclidean norm on Rd . Then the
Heisenberg–Pauli–Weil inequality (see e.g. [9,20]) leads to the following classical formulation
of the uncertainty principle in form of the lower bound of the product of the dispersions of a
unit-norm function in L2(Rd) and its Fourier transform:

∥ |x | f ∥L2(Rd ) ∥ |ξ |F( f )∥L2(Rd ) ≥
d

2
, (1.1)

with equality if and only if f is a multiple of a suitable Gaussian. Heisenberg’s inequality (1.1)
may be also written in the form

∥ |x | f ∥
2
L2(Rd )

+ ∥ |ξ |F( f )∥2
L2(Rd )

≥ d, (1.2)

where the Fourier transform is defined for f ∈ L1(Rd) ∩ L2(Rd) by:

F( f )(ξ) = (2π)−d/2


Rd
f (x)e−i⟨x,ξ⟩ dx,

and it is extended from L1(Rd) ∩ L2(Rd) to L2(Rd) in the usual way. With this normaliza-
tion, if f (x) = f̃ (|x |) is a radial function on Rd , then F( f )(ξ) = Hd/2−1( f̃ )(|ξ |), where for
α > −1/2, Hα is the Fourier–Bessel transform (also known as the Hankel transform) defined
by (see e.g. [23]):

Hα(ξ) =


R+

f (x) jα(xξ) dµα(x), ξ ∈ R+ = [0,+∞).

Here dµα(x) =
x2α+1

2α0(α+1) dx and jα (see e.g. [23,25]) is the spherical Bessel function given by:

jα(x) = 2α0(α + 1)
Jα(x)

xα
:= 0(α + 1)

∞
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(−1)n

n!0(n + α + 1)

 x

2

2n
.

Note that Jα is the Bessel function of the first kind and 0 is the gamma function.
For α > −1/2, let us recall the Poisson representation formula (see e.g. [24, (1.71.6), p. 15]):

jα(x) =
0(α + 1)

0

α +

1
2


0


1
2

  1

−1
(1 − s2)α−1/2 cos(sx) ds.

Therefore, jα is bounded with | jα(x)| ≤ jα(0) = 1. As a consequence,

∥Hα( f )∥∞ ≤ ∥ f ∥L1
α
, (1.3)

where ∥·∥∞ is the usual essential supremum norm and for 1 ≤ p < +∞, we denote by L p
α(R+)

the Banach space consisting of measurable functions f on R+ equipped with the norms:

∥ f ∥L p
α

=


R+

| f (x)|p dµα(x)
1/p

.
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