

Available online at www.sciencedirect.com

ScienceDirect

Journal of Approximation Theory

Journal of Approximation Theory 188 (2014) 39-56

www.elsevier.com/locate/jat

Full length article

Renorming spaces with greedy bases

S.J. Dilworth^a, D. Kutzarova^{b,c}, E. Odell[†], Th. Schlumprecht^{d,e}, A. Zsák^{f,*}

^a Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
^b Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria
^c Department of Mathematics, University of Illinois at Urbana-Champaign, IL 61801, USA
^d Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
^e Faculty of Electrical Engineering, Czech Technical University in Prague, Zikova 4, 166 27, Prague, Czech Republic
^f Peterhouse, Cambridge, CB2 1RD, UK

Received 15 March 2014; received in revised form 3 September 2014; accepted 6 September 2014 Available online 8 October 2014

Communicated by Ding-Xuan Zhou

Abstract

We study the problem of improving the greedy constant or the democracy constant of a basis of a Banach space by renorming. We prove that every Banach space with a greedy basis can be renormed, for a given $\varepsilon > 0$, so that the basis becomes $(1+\varepsilon)$ -democratic, and hence $(2+\varepsilon)$ -greedy, with respect to the new norm. If in addition the basis is bidemocratic, then there is a renorming so that in the new norm the basis is $(1+\varepsilon)$ -greedy. We also prove that in the latter result the additional assumption of the basis being bidemocratic can be removed for a large class of bases. Applications include the Haar systems in $L_p[0, 1]$, $1 , and in dyadic Hardy space <math>H_1$, as well as the unit vector basis of Tsirelson space. (© 2014 Elsevier Inc. All rights reserved.

MSC: 41A65; 41A44; 41A50; 46B03

Keywords: m-term approximation; Greedy basis; Democratic basis; Renorming; Fundamental function

http://dx.doi.org/10.1016/j.jat.2014.09.001

^{*} Corresponding author.

E-mail addresses: dilworth@math.sc.edu (S.J. Dilworth), denka@math.uiuc.edu (D. Kutzarova), schlump@math.tamu.edu (T. Schlumprecht), a.zsak@dpmms.cam.ac.uk (A. Zsák).

[†] Edward Odell (1947–2013). The author passed away during the production of this paper.

^{0021-9045/© 2014} Elsevier Inc. All rights reserved.

0. Introduction

In approximation theory one is often faced with the following problem. We start with a signal, *i.e.*, a vector x in some Banach space X. We then consider the (unique) expansion $\sum_{i=1}^{\infty} x_i e_i$ of x with respect to some (Schauder) basis (e_i) of X. For example, this may be a Fourier expansion of x, or it may be a wavelet expansion in L_p . We then wish to approximate x by considering *m*-term approximations with respect to the basis. The smallest error is given by

$$\sigma_m(x) = \inf \left\{ \left\| x - \sum_{i \in A} a_i e_i \right\| : A \subset \mathbb{N}, \ |A| \le m, \ (a_i)_{i \in A} \subset \mathbb{R} \right\}.$$

We are interested in algorithms that are easy to implement and that produce the best *m*-term approximation, or at least get close to it. A very natural process is the greedy algorithm which we now describe. For each $x = \sum x_i e_i \in X$ we fix a permutation $\rho = \rho_x$ of \mathbb{N} (not necessarily unique) such that $|x_{\rho(1)}| \ge |x_{\rho(2)}| \ge \cdots$. We then define the *mth greedy approximant to x* by

$$\mathcal{G}_m(x) = \sum_{i=1}^m x_{\rho(i)} e_{\rho(i)}.$$

For this to make sense we need $\inf ||e_i|| > 0$, otherwise (x_i) may be unbounded. In fact, since we will be dealing with democratic bases, all our bases will be *seminormalized*, which means that $0 < \inf ||e_i|| \le \sup ||e_i|| < \infty$. It follows that the biorthogonal functionals (e_i^*) are also seminormalized. Note that a space with a seminormalized basis (e_i) can be easily renormed to make (e_i) normalized, i.e., $||e_i|| = 1$ for all $i \in \mathbb{N}$.

We measure the efficiency of the greedy algorithm by comparing it to the best *m*-term approximation. We say that (e_i) is a greedy basis for X if there exists C > 0 (C-greedy) such that

$$||x - \mathcal{G}_m(x)|| \le C\sigma_m(x)$$
 for all $x \in X$ and for all $m \in \mathbb{N}$.

The smallest *C* is the *greedy constant* of the basis. Note that being a greedy basis is a strong property. It implies in particular the strictly weaker property that $\mathcal{G}_m(x)$ converges to *x* for all $x \in X$. If this weaker property holds, then we say that the basis (e_i) is *quasi-greedy*. This is still a non-trivial property: a Schauder basis need not be quasi-greedy in general.

The simplest examples of greedy bases include the unit vector basis of ℓ_p $(1 \le p < \infty)$ or c_0 , or orthonormal bases of a separable Hilbert space. An important and non-trivial example is the Haar basis of $L_p[0, 1]$ $(1 which was shown to be greedy by V.N. Temlyakov [8]. This result was later established by P. Wojtaszczyk [9] using a different method which extended to the Haar system in one-dimensional dyadic Hardy space <math>H_p(\mathbb{R})$, $0 . We also mention two recent results. S.J. Dilworth, D. Freeman, E. Odell and Th. Schlumprecht [3] proved that <math>\left(\bigoplus_{n=1}^{\infty} \ell_p^n\right)_{\ell_q}$ has a greedy basis whenever $1 \le p \le \infty$ and $1 < q < \infty$. Answering a question raised in [3], G. Schechtman showed that none of the space $\left(\bigoplus_{n=1}^{\infty} \ell_p\right)_{\ell_q}$, $1 \le p \ne q < \infty$, $\left(\bigoplus_{n=1}^{\infty} \ell_p\right)_{c_0}$, $1 \le p < \infty$, and $\left(\bigoplus_{n=1}^{\infty} c_0\right)_{\ell_q}$, $1 \le q < \infty$, have greedy bases [7].

Greedy bases are closely related to unconditional bases. We recall that a basis (e_i) of a Banach space X is said to be *unconditional* if there is a constant K (K-unconditional) such that

$$\left\|\sum a_i e_i\right\| \le K \cdot \left\|\sum b_i e_i\right\|$$
 whenever $|a_i| \le |b_i|$ for all $i \in \mathbb{N}$

The best constant K is the *unconditional constant* of the basis which we denote by K_U . The property of being unconditional is easily seen to be equivalent to that of being *suppression*

Download English Version:

https://daneshyari.com/en/article/4607078

Download Persian Version:

https://daneshyari.com/article/4607078

Daneshyari.com