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Abstract

The ranking problem has received increasing attention in both the statistical and machine learning
literature. This paper considers support vector machines for ranking. Under some mild conditions, a learning
rate is established.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction and main result

In the ranking problem, one has to compare two different observations and decide the ordering
between them. It has received increasing attention in both the statistical and machine learning
literature.

The problem may be modeled in the framework of statistical learning (see [7,10]). Let (X, Y )
be a pair of random variables taking values in X × Y with X ⊂ Rd ,Y ⊂ R being compact sets.
The random observation X models some object and Y its real-valued label. Let (X ′, Y ′) denote
a pair of random variables identically distributed with (X, Y ) (with respect to the probability
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P), and independent of it. In the ranking problem one observes X and X ′ but not their labels Y
and Y ′. We think about X being “better” than X ′ if Y > Y ′. We are to construct a function f :

X × X → R, called a ranking rule, which predicts the ordering between objects in the following
way: if f (X, X ′) ≥ 0, we predict that X is better than X ′. A ranking rule f has the property
f (x, x ′) f (x ′, x) ≤ 0. The performance of a ranking rule f is measured by the ranking risk

L( f ) = P(sign(Y − Y ′) f (X, X ′) < 0), (1)

i.e., the probability that f ranks two randomly drawn instances incorrectly.
Let η(X, X ′) = P(Y > Y ′

| X, X ′). It is easily seen that the ranking rule

f ∗
:= sgn(2η − 1)

minimizes the risk L( f ) in (1) over the class of all measurable functions. Obviously, f ∗(x1, x2)

= − f ∗(x2, x1).
In practice, the best rule f ∗ is unknown since the probability P is unknown. Instead, we are

given n independent, identically distributed copies, Z1 = (X1, Y1), . . . , Zn = (Xn, Yn). The
empirical error of f

Ln( f ) =
1

n(n − 1)


i≠ j

I[sign(Yi − Y j ) f (X i , X j ) < 0] (2)

is an estimator of L( f ), where I(·) is the indicator function. Based on the empirical estimate,
one may define the empirical risk minimizer

rn = arg min
f ∈F

Ln( f ). (3)

In [7, Corollary 6], under a noise assumption as (16) below, the authors established a fast
convergence for VC classes F :

P


L(rn)− L∗
≤ 2


inf
f ∈F

L( f )− L∗


+ C

 ln n + t

n

 1
2−α


≥ 1 − e−t , t > 0,

where L∗
= L( f ∗), and C and α ∈ (0, 1] are constants.

It is known that finding a minimizer of Ln( f ) over F is computationally difficult and not
efficient. A commonly used approach is to replace the indicator function I by a convex and non-
negative function ϕ defined on R and Ln( f ) by the empirical convex risk [7,10]

Qn( f ) =
1

n(n − 1)


i≠ j

ϕ f (Zi , Z j ), (4)

where ϕ f (z, z′) = ϕ(sign(y − y′) f (x, x ′)) with z = (x, y), z′
= (x ′, y′).

Denote fn the minimizer of empirical convex risk over a class F of rules:

fn = arg min
f ∈F

Qn( f ).

In [10], a fast convergence rate

P


Q( fn)− inf
f ∈F

Q( f ) ≤ C1 max
 ln n

n
,

1
nγ


+ C2

C3 + t

n


≥ 1 − e−t , t > 0, (5)
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