

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 183 (2014) 72-81

www.elsevier.com/locate/jat

Full length article

Stability of ball proximinality

Pei-Kee Lin^a, Wen Zhang^b, Bentuo Zheng^{a,*}

^a Department of Mathematics, University of Memphis, Memphis, TN, 38152, United States ^b Department of Mathematics, Xiamen University, China

Received 4 November 2013; received in revised form 17 March 2014; accepted 14 April 2014 Available online 21 April 2014

Communicated by Patrick Combettes

Abstract

In this paper, we show that if *E* is an order continuous Köthe function space and *Y* is a separable subspace of *X*, then E(Y) is ball proximinal in E(X) if and only if *Y* is ball proximinal in *X*. As a consequence, E(Y) is proximinal in E(X) if and only if *Y* is proximinal in *X*. This solves an open problem of Bandyopadhyay, Lin and Rao. It is also shown that if *E* is a Banach lattice with a 1-unconditional basis and for each *n*, Y_n is a subspace of X_n , then $(\bigoplus Y_n)_E$ is ball proximinal in $(\bigoplus X_n)_E$ if and only if each Y_n is ball proximinal in X_n .

© 2014 Elsevier Inc. All rights reserved.

MSC: 46B20; 41A50

Keywords: Ball proximinal

1. Introduction

For any real Banach space X, we denote by B_X and S_X , respectively, the closed unit ball and unit sphere of X. Let C be a nonempty closed convex subset of X. For any $x \in X$ and $\delta > 0$,

* Corresponding author.

http://dx.doi.org/10.1016/j.jat.2014.04.008

E-mail addresses: pklin@memphis.edu (P.-K. Lin), wenzhang@xmu.edu.cn (W. Zhang), bzheng@memphis.edu (B. Zheng).

^{0021-9045/© 2014} Elsevier Inc. All rights reserved.

 $P_C(x)$ and $P_C(x, \delta)$ denote the sets

$$P_C(x) = \{ z \in C : ||x - z|| = d(x, C) \},\$$

$$P_C(x, \delta) = \{ y \in C : ||x - y|| < d(x, C) + \delta \}.$$

C is said to be *proximinal* if, for every *x* in *X*, the set $P_C(x) \neq \emptyset$. A proximinal subset *C* is said to be *strongly proximinal* if for any $\varepsilon > 0$ and any $x \in X$, there exists $\delta > 0$, such that $P_C(x, \delta) \subset P_C(x) + \varepsilon B_X$. Let *Y* be a subspace of *X*. Here subspaces of *X* always mean closed vector subspaces. *Y* is said to be *ball proximinal* (respectively, *strongly ball proximinal*) if the closed unit ball B_Y is proximinal subspace of *X*, then *Y* is a (strongly) ball proximinal subspace of *X*. In [8], Saidi showed for any nonreflexive space *Y* there is a Banach space *X* such that *Y* is isometrically isomorphic to a subspace *Z* of *X* such that *Z* is proximinal in *X*; but not ball proximinal in *X*.

Let (Ω, Σ, μ) be a measure space. A Köthe function space *E* is a Banach space of measurable real-valued functions that satisfies the following conditions:

- (1) For any finite measurable set $A, \chi_A \in E$.
- (2) If g ∈ E and f is a measurable function such that |f(ω)| ≤ |g(ω)| for almost all ω, then f ∈ E and ||f||_E ≤ ||g||_E.

E is said to be strictly monotone if for any 0 < f < g, $||f||_E < ||g||_E$. *E* is said to be uniformly monotone if for any ϵ , there is $\delta > 0$ such that if $||f||_E = 1$ and $||g||_E > \delta$, then $|||f| + |g||| > 1 + \epsilon$. It is easy to see that for any $1 \le p < \infty$, L_p is uniformly monotone. *E* is said to be order continuous, if for any decreasing sequence (f_n) in *E* that converges to 0 for almost all $\omega \in \Omega$,

$$\lim_{n \to \infty} \|f\|_E = 0$$

Let X be a Banach space. The Köthe–Bochner function space E(X) is the collection of X-valued measurable functions F such that $||F(\cdot)||_X \in E$. The norm of F is defined by

$$||F||_{E(X)} = |||F(\cdot)||_X||_E.$$

Several papers [3,6,7] have been devoted to studying the following problem:

Question 1. Let *E* be a Köthe function space and *Y* a subspace of a Banach space *X*. Is E(Y) proximinal in E(X) if *Y* is proximinal in X?

Mendoza proved the following:

- (1) Let X be a Banach space, let Y be a closed separable subspace of X, and let $1 \le p \le \infty$. $L_p(\mu, Y)$ is proximinal in $L_p(\mu, X)$ if and only if Y is proximinal in X.
- (2) There exists a Banach space such that X has a proximinal subspace Y such that $L_p([0, 1], Y)$ is not proximinal in $L_p([0, 1], X)$ for any $1 \le p \le \infty$.

Bandyopadhyay, Lin, and Rao [1] showed if (X_n) and (Y_n) are two sequences of Banach spaces such that Y_n is a subspace of X_n that is ball proximinal in X_n for each n, then $(\oplus Y_n)_{c_0}$ is ball proximinal in $(\oplus X_n)_{c_0}$. They asked

Question 2. Let *E* be a Köthe function space and *X* a Banach space. Is E(Y) ball proximinal in E(X) if *Y* is ball proximinal in *X*?

Download English Version:

https://daneshyari.com/en/article/4607102

Download Persian Version:

https://daneshyari.com/article/4607102

Daneshyari.com