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Abstract

In this paper we consider the approximation of a function by its interpolating multilinear spline and the
approximation of its derivatives by the derivatives of the corresponding spline. We obtain the exact uniform
approximation error on classes of functions with moduli of continuity bounded above by certain majorants.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Basic definitions and notation

Let x = (x1, x2, . . . , xn) be a point in Euclidean space Rn . By CD we denote the class of
functions f (x) = f (x1, x2, . . . , xn) that are continuous on the domain D := [0, 1]

n
⊂ Rn .
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We consider a vector r ∈ {0, 1}
n , i.e. a vector having n components each being either 0 or 1.

Let Cr
D be the class of functions, f (x) ∈ CD , with continuous derivatives

f (t)(x) =
∂
n

i=1 ti f

∂x t1 · · · ∂x tn
(x),

where t ∈ {0, 1}
n and ti ≤ ri for each i = 1, . . . , n. We define f (0)(x) := f (x) and C0

D := CD .
For any function f (x) ∈ CD , consistent with literature, we denote the uniform norm as

∥ f ∥C := max{| f (x)| : x ∈ D}.

The next two definitions introduce two types of moduli of continuity of a given function f ,
both characterizing the smoothness of the original function f .

Definition 1. If the function f (x) is bounded for xi ∈ [ai , bi ], i = 1, . . . , n, then its total
modulus of continuity, ω( f ; τ ), is defined as follows

ω( f ; τ ) := ω( f ; a, b; τ )

= sup {| f (x) − f (y)| : |xi − yi | ≤ τi ; xi , yi ∈ [ai , bi ]} ,

where 0 ≤ τi ≤ bi − ai , for i = 1, . . . , n and τ := (τ1, . . . , τn), a := (a1, . . . , an),
b := (b1, . . . , bn).

In addition, we consider the following lp distances, 1 ≤ p < ∞, between points x, y ∈ D ⊂ Rn ,

∥x − y∥p := p

 n
i=1

|xi − yi |
p.

Definition 2. For the function f (x) ∈ CD and for given p, 1 ≤ p < ∞, we define the modulus
of continuity of function f with respect to p to be

ωp( f ; γ ) := sup

| f (x) − f (y)| : x, y ∈ D, ∥x − y∥p ≤ γ


, 0 ≤ γ ≤ dp,

where dp := max{∥x − y∥p : x, y ∈ D ⊂ Rn
}.

We point out that

dp =
p
√

n.

Note that the moduli of continuity of all suitable functions have some common properties. We
call all functions (univariate or multivariate) with these properties functions of the moduli of
continuity type and use them to define classes of smoothness of functions.

Definition 3. Function Ω(τ ) is called a function of modulus of continuity type, or MC-type
function (for short), if the following properties hold for any vectors γ , τ ∈ Rn

+ := {x ∈ Rn
:

xi ≥ 0, i = 1, . . . , n}:

1. Ω(0) = 0.
2. Ω(τ ) := Ω(τ1, . . . , τn) is non-decreasing (in each coordinate).
3. Ω(τ + γ ) ≤ Ω(τ ) + Ω(γ ), that is Ω(τ ) is subadditive.
4. Ω(τ ) is continuous for all τi , i = 1, . . . , n.
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