
Available online at www.sciencedirect.com

ScienceDirect

Journal of Approximation Theory 187 (2014) 18–29
www.elsevier.com/locate/jat

Full length article

Interpolation on cycloidal spaces

J.M. Carnicer∗, E. Mainar, J.M. Peña
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Abstract

Hermite interpolation problems on cycloidal spaces are analyzed. Newton and Aitken–Neville formulae
are obtained. Numerical examples are included.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The cycloidal space of dimension n + 1 is defined for n ≥ 2 by

Cn := ⟨cos x, sin x, 1, x, x2, . . . , xn−2
⟩

and for n = 1, C1 := ⟨cos x, sin x⟩. Cycloidal spaces have been used in geometric design to
deal with shape preserving representations that allow circles to be represented by their natural
parameterization. They also allow the designer to deal with important curves in civil engineer-
ing, such as cycloids and helices. In [9], an extension of cubic curves was considered by using
curves whose components are functions in the cycloidal space C3. In [5], curves in C4 have been
considered. In [2], the cycloidal space C5 was analyzed and some properties of the general cy-
cloidal spaces Cn were discussed. Shape preserving representations in general spaces of the form
⟨u(x), v(x), 1, x, x2, . . . , xn−2

⟩ with suitable functions u and v have been considered in [4].
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In this paper we focus on interpolation problems on cycloidal spaces. Mühlbach derived gen-
eral interpolation formulae in extended complete Chebyshev spaces (see [6,7]), also discussed
in [8]. We shall deduce some interpolation formulae that closely resemble those derived by
Mühlbach. Since cycloidal spaces are not extended Chebyshev spaces on intervals of arbitrary
length (see Section 4), formulae in [6,7] need to be extended under weaker hypotheses. We also
take advantage of the invariance under translations of cycloidal spaces and the fact that Cn con-
tains as a subspace Pn−2, the space of polynomials of degree not greater than n − 2.

In Section 2, we consider the Hermite interpolation problem on Cn and derive a Newton for-
mula for the cycloidal interpolant. We describe recurrence relations for cycloidal divided differ-
ences and an Aitken–Neville formula. We also suggest an algorithm for implementing Newton’s
formula. In Section 3, we relate the cycloidal interpolant of a function f with polynomial inter-
polants of the functions f , cosine and sine and obtain a bound for the interpolation error. We
also illustrate with some examples the results previously discussed. They confirm the ability of
cycloidal interpolants to reproduce oscillations. They also illustrate the fact that a cycloidal inter-
polant can have much lower interpolation errors outperforming polynomial interpolation. Finally,
in Section 4 we relate the results in this paper with Mühlbach’s results through the critical lengths
of the spaces introduced in [2].

2. The Hermite interpolation problem on cycloidal spaces

An extended sequence of nodes is a sequence of points x0, . . . , xn , not necessarily distinct.
We pose the Hermite interpolation problem on Cn at an extended sequence of nodes x0, . . . , xn :
find c ∈ Cn such that λi c = λi f, i = 0, . . . , n, where

λi f := f (ri −1)(xi ), ri = #{ j ≤ i | x j = xi }. (1)

If x0, . . . , xn are nodes such that, there exists a unique solution of the Hermite interpolation
problem for any f , the unique solution will be called the cycloidal interpolant of f and will be
denoted by C( f ; x0, . . . , xn). The cycloidal interpolant is invariant under translations as shown
in the following result.

Proposition 1. Assume that the Hermite interpolation problem at x0, . . . , xn has a unique
solution in Cn, n ≥ 1. Then for any t ∈ R, the Hermite interpolation problem at x0+t, . . . , xn+t
has also a unique solution in Cn ,

C( f ; x0 + t, . . . , xn + t)(x) = C( f (· + t); x0, . . . , xn)(x − t). (2)

Proof. Let us show that the interpolant at x0 + t, . . . , xn + t exists for any function f . Let
c(x) := C( f (·+ t); x0, . . . , xn)(x) ∈ Cn . The space Cn, n ≥ 1, is invariant under translations in
the sense that, if c ∈ Cn , then ct (x) := c(x − t) belongs to Cn for any t ∈ R. Thus we have that
ct ∈ Cn interpolates f at x0+t, . . . , xn+t because c(ri −1)

t (xi +t) = c(ri −1)(xi ) = f (ri −1)(xi +t),
ri = #{ j ≤ i | x j = xi }, i = 0, . . . , n. Then the existence, uniqueness and (2) follows. �

An alternative basis to (cos x, sin x, 1, x, . . . , xn−2) for Cn is given by

ϕ0(x) := cos x, ϕi (x) :=

 x

0
ϕi−1(y)dy, i = 1, . . . , n. (3)

Clearly ϕi ∈ Ci , for all i = 0, . . . , n, and the linear independence follows from the fact that
ϕi (0) = ϕ′

i (0) = · · · = ϕ
(i−1)
i (0) = 0, ϕ

(i)
i (0) = 1. The function ϕn is the fundamental solution
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