

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF Approximation Theory

www.elsevier.com/locate/jat

Journal of Approximation Theory 182 (2014) 59-67

Notes

A note on a Stone-Weierstrass type theorem for set-valued mappings

M.S. Kashimoto

Departamento de Matemática e Computação, Universidade Federal de Itajubá, 37500-903 Itajubá MG, Brazil

Received 19 March 2013; received in revised form 20 January 2014; accepted 5 March 2014

Available online 18 March 2014

Communicated by Heinz Bauschke

Abstract

We establish a Stone-Weierstrass type theorem for set-valued mappings. © 2014 Elsevier Inc. All rights reserved.

Keywords: Stone-Weierstrass theorem; Zorn lemma; Set-valued mapping; Property V

1. Introduction and preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space and $(E, \|\cdot\|)$ is a normed vector space over \mathbb{K} , where \mathbb{K} denotes either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. We shall denote by C(X; E) the vector space over \mathbb{K} of all continuous functions from X into E and we denote by $C_b(X; \mathbb{K})$ the algebra of all bounded continuous \mathbb{K} -valued functions on X.

A continuous function f from X to E is said to vanish at infinity if for every $\varepsilon > 0$ the set $\{x \in X : ||f(x)|| \ge \varepsilon\}$ is compact. Let $C_0(X; E)$ be the vector space of all continuous functions from X into E vanishing at infinity and equipped with the supremum norm.

If Y is a nonempty subset of X and $f: X \to S$ is any function where S is a nonempty set, we denote by $f|_Y$ the function $y \in Y \mapsto f(y)$. If \mathcal{F} is an arbitrary nonempty family of functions $f: X \to S$, we denote by $\mathcal{F}|_Y$ the set $\{f|_Y: f \in \mathcal{F}\}$.

E-mail addresses: mskashim@gmail.com, kaxixi@unifei.edu.br.

For $A \subset C(X; \mathbb{R})$, we define the following equivalence relation on $X : x \sim t \mod A$ if and only if g(x) = g(t) for all $g \in A$. For any $x \in X$, we denote by $[x]_A$ the equivalence class of x.

Let us denote by D(X) the set $\{f \in C(X; \mathbb{R}) : 0 \le f \le 1\}$.

A subset A of D(X) is said to have property V if it satisfies the following conditions:

- (a) if $\phi \in A$, then $1 \phi \in A$;
- (b) if $\phi \in A$ and $\psi \in A$, then $\phi \psi \in A$.

The definition of property V was introduced by von Neumann [11].

If W is a nonempty subset of C(X; E), a function $\phi \in D(X)$ is called a multiplier of W, if $\phi f + (1 - \phi)g \in W$ for every $f, g \in W$. We denote by M(W) the set of multipliers of W. The notion of a multiplier of W is due to Feyel and De La Pradelle [3] and Chao-Lin [2].

Clearly, if $\phi \in M(W)$, then $1 - \phi \in M(W)$. Moreover the identity

$$\phi \psi f + (1 - \phi \psi)g = \psi [\phi f + (1 - \phi)g] + (1 - \psi)g$$

shows that $\phi \psi \in M(W)$, whenever $\phi, \psi \in M(W)$. Thus, M(W) has property V.

A vector subspace A of $C(X; \mathbb{K})$ is called a subalgebra over \mathbb{K} if $fg \in A$ whenever $f, g \in A$. It is self-adjoint if the complex-conjugate $\overline{f} = u - iv$ belongs to A, whenever f = u + iv belongs to A.

Let A be a subalgebra of $C(X; \mathbb{K})$. A vector subspace $W \subset C(X; E)$ is called an A-module if $\phi g \in W$ for every $\phi \in A$ and $g \in W$.

A carrier is a set-valued mapping $\phi: X \to 2^E$ such that $\phi(x) \neq \emptyset$ for each $x \in X$.

The distance of a carrier $\phi: X \to 2^E$ from a function $g \in C_0(X; E)$ is defined by

$$d(\phi; g) := \sup_{x \in X} \sup_{y \in \phi(x)} \|y - g(x)\|$$

and the distance of ϕ from a subset $W \subset C_0(X; E)$ is

$$d(\phi; W) := \inf\{d(\phi; g) : g \in W\}.$$

If $v \in E$ and s > 0, we denote by B(v, s) the set $\{u \in E : ||u - v|| < s\}$.

A carrier $\phi: X \to 2^E$ is said to be *upper semicontinuous with respect to* $W \subset C_0(X; E)$, if given $w \in W$ and r > 0, for each $x \in X$ such that $\phi(x) \subset B(w(x); r)$ and each $\varepsilon > 0$, there is a neighborhood U of x such that $\phi(y) \subset B(w(y); r + \varepsilon)$ for all $y \in U$.

A carrier $\phi: X \to 2^E$ is said to vanish at infinity with respect to $W \subset C_0(X; E)$, if for each $w \in W$ and $\varepsilon > 0$ the set

$${x \in X : \phi(x) \cap (E \setminus B(w(x); \varepsilon)) \neq \emptyset}$$

is relatively compact.

We denote the closure of a subset T of a topological space by \overline{T} .

Prolla and Machado [8] proved the following "localization formula".

Theorem 1.1. Let $A \subset C_b(X; \mathbb{K})$ be a self-adjoint subalgebra and let $W \subset C_0(X; E)$ be an A-module. For any carrier $\phi: X \to 2^E$ which is upper semicontinuous and vanishes at infinity with respect to W, we have

$$d(\phi; W) = \sup_{x \in X} d(\phi|_{[x]_A}; W|_{[x]_A}).$$

Soares [10] proved a version of Theorem 1.1 when E is a non-Archimedean normed space. The Stone-Weierstrass theorem is a special case of Theorem 1.1.

Download English Version:

https://daneshyari.com/en/article/4607145

Download Persian Version:

https://daneshyari.com/article/4607145

<u>Daneshyari.com</u>