

Available online at [www.sciencedirect.com](http://www.elsevier.com/locate/jat)

JOURNAL OF Approximation **Theory**

[Journal of Approximation Theory 182 \(2014\) 59–67](http://dx.doi.org/10.1016/j.jat.2014.03.008)

www.elsevier.com/locate/jat

Notes

A note on a Stone-Weierstrass type theorem for set-valued mappings

M.S. Kashimoto

Departamento de Matematica e Computac¸ ´ ao, Universidade Federal de Itajub ˜ a, 37500-903 Itajub ´ a MG, Brazil ´

Received 19 March 2013; received in revised form 20 January 2014; accepted 5 March 2014 Available online 18 March 2014

Communicated by Heinz Bauschke

Abstract

We establish a Stone-Weierstrass type theorem for set-valued mappings. ⃝c 2014 Elsevier Inc. All rights reserved.

Keywords: Stone-Weierstrass theorem; Zorn lemma; Set-valued mapping; Property V

1. Introduction and preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space and $(E, \|\cdot\|)$ is a normed vector space over K, where K denotes either the field R of real numbers or the field $\mathbb C$ of complex numbers. We shall denote by $C(X; E)$ the vector space over K of all continuous functions from *X* into *E* and we denote by $C_b(X; K)$ the algebra of all bounded continuous K-valued functions on *X*.

A continuous function *f* from *X* to *E* is said to *vanish at infinity* if for every $\varepsilon > 0$ the set ${x \in X : ||f(x)|| \geq \varepsilon}$ is compact. Let $C_0(X; E)$ be the vector space of all continuous functions from *X* into *E* vanishing at infinity and equipped with the supremum norm.

If *Y* is a nonempty subset of *X* and $f : X \to S$ is any function where *S* is a nonempty set, we denote by $f|_Y$ the function $y \in Y \mapsto f(y)$. If F is an arbitrary nonempty family of functions $f: X \to S$, we denote by $\mathcal{F}|_Y$ the set $\{f|_Y : f \in \mathcal{F}\}.$

E-mail addresses: [mskashim@gmail.com,](mailto:mskashim@gmail.com) [kaxixi@unifei.edu.br.](mailto:kaxixi@unifei.edu.br)

<http://dx.doi.org/10.1016/j.jat.2014.03.008>

^{0021-9045/© 2014} Elsevier Inc. All rights reserved.

For $A \subset C(X; \mathbb{R})$, we define the following equivalence relation on $X : x \sim t \mod A$ if and only if $g(x) = g(t)$ for all $g \in A$. For any $x \in X$, we denote by [x]_{*A*} the equivalence class of *x*. Let us denote by $D(X)$ the set $\{f \in C(X; \mathbb{R}) : 0 \le f \le 1\}.$

A subset *A* of *D*(*X*) is said to have *property V* if it satisfies the following conditions:

(a) if $\phi \in A$, then $1 - \phi \in A$; (b) if $\phi \in A$ and $\psi \in A$, then $\phi \psi \in A$.

The definition of property *V* was introduced by von Neumann [\[11\]](#page--1-0).

If *W* is a nonempty subset of $C(X; E)$, a function $\phi \in D(X)$ is called a multiplier of *W*, if $\phi f + (1 - \phi)g \in W$ for every $f, g \in W$. We denote by $M(W)$ the set of multipliers of W. The notion of a multiplier of *W* is due to Feyel and De La Pradelle [\[3\]](#page--1-1) and Chao-Lin [\[2\]](#page--1-2).

Clearly, if $\phi \in M(W)$, then $1 - \phi \in M(W)$. Moreover the identity

$$
\phi \psi f + (1 - \phi \psi)g = \psi[\phi f + (1 - \phi)g] + (1 - \psi)g
$$

shows that $\phi \psi \in M(W)$, whenever $\phi, \psi \in M(W)$. Thus, $M(W)$ has property *V*.

A vector subspace *A* of $C(X; \mathbb{K})$ is called a subalgebra over \mathbb{K} if $f \circ \in A$ whenever $f, g \in A$. It is self-adjoint if the complex-conjugate $\overline{f} = u - iv$ belongs to A, whenever $f = u + iv$ belongs to *A*.

Let *A* be a subalgebra of $C(X; \mathbb{K})$. A vector subspace $W \subset C(X; E)$ is called an *A*-module if $\phi g \in W$ for every $\phi \in A$ and $g \in W$.

A carrier is a set-valued mapping $\phi: X \to 2^E$ such that $\phi(x) \neq \emptyset$ for each $x \in X$. The distance of a carrier $\phi: X \to 2^E$ from a function $g \in C_0(X; E)$ is defined by

 $d(\phi; g) := \sup \sup \|y - g(x)\|$ *x*∈*X y*∈φ(*x*)

and the distance of ϕ from a subset $W \subset C_0(X; E)$ is

 $d(\phi; W) := \inf \{ d(\phi; g) : g \in W \}.$

If $v \in E$ and $s > 0$, we denote by $B(v, s)$ the set $\{u \in E : ||u - v|| < s\}.$

A carrier $\phi: X \to 2^E$ is said to be *upper semicontinuous with respect to* $W \subset C_0(X; E)$, if given $w \in W$ and $r > 0$, for each $x \in X$ such that $\phi(x) \subset B(w(x); r)$ and each $\varepsilon > 0$, there is a neighborhood *U* of *x* such that $\phi(y) \subset B(w(y); r + \varepsilon)$ for all $y \in U$.

A carrier $\phi: X \to 2^E$ is said to vanish at infinity with respect to $W \subset C_0(X; E)$, if for each $w \in W$ and $\varepsilon > 0$ the set

 ${x \in X : \phi(x) \cap (E \setminus B(w(x); \varepsilon)) \neq \emptyset}$

is relatively compact.

We denote the closure of a subset *T* of a topological space by \overline{T} .

Prolla and Machado [\[8\]](#page--1-3) proved the following "localization formula".

Theorem 1.1. Let $A \subset C_b(X; \mathbb{K})$ be a self-adjoint subalgebra and let $W \subset C_0(X; E)$ be an *A-module. For any carrier* φ : *X* → 2 *^E which is upper semicontinuous and vanishes at infinity with respect to W , we have*

$$
d(\phi; W) = \sup_{x \in X} d(\phi|_{[x]_A}; W|_{[x]_A}).
$$

Soares [\[10\]](#page--1-4) proved a version of [Theorem 1.1](#page-1-0) when *E* is a non-Archimedean normed space. The Stone-Weierstrass theorem is a special case of [Theorem 1.1.](#page-1-0)

Download English Version:

<https://daneshyari.com/en/article/4607145>

Download Persian Version:

<https://daneshyari.com/article/4607145>

[Daneshyari.com](https://daneshyari.com)