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Abstract

In this paper, we establish error bounds for approximation by multivariate Bernstein–Durrmeyer opera-
tors in L p

ρX (1 ≤ p < ∞) with respect to a general Borel probability measure ρX on a simplex X ⊂ Rn .
By the error bounds, we provide convergence rates of type O(m−γ ) with some γ > 0 for the least-squares
regularized regression algorithm associated with a multivariate polynomial kernel (where m is the sample
size). The learning rates depend on the space dimension n and the capacity of the reproducing kernel Hilbert
space generated by the polynomial kernel.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the approximation by multivariate Bernstein–Durrmeyer operators in
L p

ρX with respect to an arbitrary Borel probability measure ρX on a simplex X ⊂ Rn . The es-
tablished error bounds are applied to the least-squares regression associated with multivariate
polynomial kernels. Our purpose is to give learning rates for the regression algorithm.

Let X be a compact metric space, Y = R and ρ be a Borel probability measure on Z := X ×Y .
The least-squares error (or the generalization error) [8,9,20] for a function f : X → Y is defined
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as

E ( f ) =


Z
( f (x) − y)2dρ. (1.1)

The function that minimizes the least squares error is called the regression function, which is
given by

fρ(x) =


Y

ydρ(y|x), x ∈ X. (1.2)

Here ρ(·|x) is the conditional probability measure at x ∈ X induced by ρ.
The target of the regression problem is to learn the regression function or to find good

approximations from random samples. The least-squares regularized algorithm for regression
considered here is generated by a Mercer kernel [2,18] K : X × X → R which is a continu-
ous, symmetric and positive semidefinite function in the sense that for any finite set of points
{x1, . . . , xl} ⊂ X , the matrix (K (xi , x j ))

l
i, j=1 is positive semidefinite. The reproducing kernel

Hilbert space (RKHS) HK associated with the kernel K is defined [2] to be the completion
of the linear span of the set of functions {Kx := K (x, ·) : x ∈ X} with the inner product
⟨·, ·⟩HK = ⟨·, ·⟩K given by ⟨Kx, Kt⟩ = K (x, t). The reproducing property takes the form

⟨Kx, g⟩K = g(x), ∀x ∈ X, g ∈ HK .

Denote C(X) as the space of continuous functions on X with the norm ∥ · ∥. Let κ := supx∈X√
K (x, x). Then the above reproducing property tells us that

∥g∥ ≤ κ∥g∥K , ∀g ∈ HK . (1.3)

Denote z = {zi }
m
i=1 = {(xi , yi )}

m
i=1 ∈ Zm a set of random samples independently drawn

according to ρ. We call m the sample size. Define the empirical error Ez( f ) of f : X → R as

Ez( f ) =
1
m

m
i=1

( f (xi ) − yi )
2 .

It is a discretization of the least-squares error E ( f ). The least-squares regularized algorithm
for regression associated with the Mercer kernel K is defined by the following least-squares
optimization problem involving the set z of random samples

fz = fz,λ = arg min
f ∈HK


Ez( f ) + λ∥ f ∥

2
K


. (1.4)

Here λ > 0 is a constant, called the regularization parameter. Usually it is chosen to depend on
m : λ = λ(m), and limm→∞ λ(m) = 0.

The efficiency of the learning algorithm (1.4) is measured by the excess generalization error
E ( fz) − E ( fρ), which can be decomposed into a sample error and a regularization error as
described in Proposition 1.1 below.

Throughout this paper, we assume that for some M ≥ 0, ρ(·|x) is supported on [−M, M] for
almost every x, that is, |y| ≤ M almost surely. It follows from the definition (1.2) of fρ that
almost everywhere

| fρ(x)| ≤ M. (1.5)

We know that the efficiency of the algorithm (1.4) should be measured by the difference be-
tween fz and the regression function fρ . Because of the least-squares nature, the measurement
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