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Abstract

In this paper, we establish error bounds for approximation by multivariate Bernstein—Durrmeyer opera-
tors in Lgx (1 < p < oo) with respect to a general Borel probability measure px on a simplex X C R”.
By the error bounds, we provide convergence rates of type O (m ™) with some y > 0 for the least-squares
regularized regression algorithm associated with a multivariate polynomial kernel (where m is the sample
size). The learning rates depend on the space dimension n and the capacity of the reproducing kernel Hilbert
space generated by the polynomial kernel.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the approximation by multivariate Bernstein—Durrmeyer operators in
Lﬁx with respect to an arbitrary Borel probability measure px on a simplex X C R". The es-
tablished error bounds are applied to the least-squares regression associated with multivariate
polynomial kernels. Our purpose is to give learning rates for the regression algorithm.

Let X be a compact metric space, Y = R and p be a Borel probability measureon Z := X x Y.
The least-squares error (or the generalization error) [8,9,20] for a function f : X — Y is defined
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as

E(f) = /Z (f ) — y)dp. (1)

The function that minimizes the least squares error is called the regression function, which is
given by

fp(X)zfyydp(ylx), x € X. (1.2)

Here p(-|x) is the conditional probability measure at x € X induced by p.

The target of the regression problem is to learn the regression function or to find good
approximations from random samples. The least-squares regularized algorithm for regression
considered here is generated by a Mercer kernel [2,18] K : X x X — R which is a continu-
ous, symmetric and positive semidefinite function in the sense that for any finite set of points
{x1,...,x;} C X, the matrix (K (x;, xj))f’j:1 is positive semidefinite. The reproducing kernel
Hilbert space (RKHS) Hg associated with the kernel K is defined [2] to be the completion
of the linear span of the set of functions {Kx = K(X,-) : X € X} with the inner product
(-, YHx = (-, ")k given by (Kx, K¢) = K (x, t). The reproducing property takes the form

(Kx, &)k = 8(x), Vxe X, ge€ Hg.

Denote C(X) as the space of continuous functions on X with the norm || - ||. Let « := supgcx
+ K (x, X). Then the above reproducing property tells us that

gl <«ligllk. Vg€ Hk. (1.3)

Denote z = {z;}/; = {(x;, yi)}/L; € Z™ a set of random samples independently drawn

according to p. We call m the sample size. Define the empirical error £,(f) of f : X — R as
1 m 2
& = — D — vi)“.
A=~ ; (f (i) = ¥i)

It is a discretization of the least-squares error £(f). The least-squares regularized algorithm
for regression associated with the Mercer kernel K is defined by the following least-squares
optimization problem involving the set z of random samples

— — ; 2
fo= far=ae min (&0 + 4171 (1.4)

Here A > 0 is a constant, called the regularization parameter. Usually it is chosen to depend on
m : A = A(m), and lim,;, _, oo A(m) = 0.

The efficiency of the learning algorithm (1.4) is measured by the excess generalization error
E(f2) — E(f,), which can be decomposed into a sample error and a regularization error as
described in Proposition 1.1 below.

Throughout this paper, we assume that for some M > 0, p(-|x) is supported on [—M, M] for
almost every x, that is, |[y| < M almost surely. It follows from the definition (1.2) of f, that
almost everywhere

[fpX®)] =M. (1.5)

We know that the efficiency of the algorithm (1.4) should be measured by the difference be-
tween f; and the regression function f,. Because of the least-squares nature, the measurement
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