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Abstract

We find the asymptotic orders of best m-term trigonometric approximation for Nikol’skii–Besov classes
B r

p, θ of periodic functions of several variables in the space Lq , 1 ≤ p ≤ 2 < q < ∞, for the cases of

“small” smoothness d
p −

d
q < r < d

p and for the “critical” value of the smoothness r =
d
p . These results are

complementary to the estimates of the best m-term trigonometric approximation for classes B r
p, θ obtained

by R.A. DeVore and V.N. Temlyakov.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let Rd , d ≥ 1, be the d-dimensional Euclidean space of points x = (x1, . . . , xd), and
L p(Td), 1 ≤ p ≤ ∞, Td

=
d

j=1[−π; π), be the space of functions f (x) = f (x1, . . . , xd)

that are 2π -periodic in each variable and their norm

∥ f ∥p =


(2π)−d


Td

| f (x)|pdx

 1
p

, 1 ≤ p < ∞,
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∥ f ∥∞ = ess sup
x∈Td

| f (x)|,

is finite.
Furthermore, let k ∈ N and h ∈ Rd . For f ∈ L p(Td), we denote

△h f (x) = f (x + h) − f (x),

and we define the difference of order k with a step h by the following formula:

∆k
h f (x) = ∆h∆k−1

h f (x), ∆0
h f (x) = f (x).

The modulus of smoothness of order k for a function f ∈ L p(Td) is defined by the formula

ωk( f, t)p = sup
|h|≤t

∥∆k
h f ∥p,

where |h| =


h2

1 + · · · + h2
d .

We say that a function f ∈ L p(Td) belongs to the space Br
p,θ , 1 ≤ p, θ ≤ ∞, r > 0, if

∞

0
(t−rωk( f, t)p)

θ dt

t

1/θ

< ∞, 1 ≤ θ < ∞,

and

sup
t>0

t−rωk( f, t)p < ∞, θ = ∞.

The norm of the space Br
p,θ is defined by formulas

∥ f ∥Br
p,θ

= ∥ f ∥p +


∞

0
(t−rωk( f, t)p)

θ dt

t

1/θ

, 1 ≤ θ < ∞, (1.1)

and

∥ f ∥Br
p,∞

= ∥ f ∥p + sup
t>0

t−rωk( f, t)p, θ = ∞, (1.2)

for some k > r . It is known that the above definition is independent (up to norm equivalence) of
the choice of the integer k > r (see, e.g., [6]).

The spaces H r
p ≡ B r

p, ∞ and B r
p, θ , 1 ≤ θ < ∞, were introduced by S.M. Nikol’skii [26] and

O.V. Besov [3] respectively.
The Nikol’skii–Besov class

B r
p, θ := { f ∈ B r

p, θ : ∥ f ∥B r
p, θ

≤ 1}

is defined as the unit ball of the space B r
p, θ .

Note that the classes B r
p, θ and H r

p were studied from the approximation viewpoint in [4,5,7,
12,8,36,15,29,30,32,11], where additional relevant references can be found.

Now we define approximation characteristics that will be investigated in the present paper.
Let Θm be a set of m arbitrary d-dimensional vectors with integer coordinates and

P(Θm, x) =


k∈Θm
ckei(k,x), (k, x) = k1x1 + · · · + kd xd , be trigonometric polynomials with
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