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Abstract

We show that even a relatively small number of poles of a sequence of orthogonal rational functions
approaching the interval of orthogonality, can prevent their Christoffel functions from having the expected
asymptotics. We also establish a sufficient condition on the rate for such asymptotics, provided the rate of
approach of the poles is sufficiently slow. This provides a supplement to recent results of the authors where
poles were assumed to stay away from the interval of orthogonality.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let u be a finite positive Borel measure on [—1, 1], with infinitely many points in its support.
Then we can define orthonormal polynomials p,(x) = p,(du,x) = yx" +---,n > 0,
satisfying
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We say the measure w is regular on [—1, 1] in the sense of Stahl, Totik, and Ullmann, or just
regular [5], if

lim /" = 2.
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An equivalent definition involves norms of polynomials of degree < n:
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Regularity of a measure is useful in studying asymptotics of orthogonal polynomials. One simple
criterion for regularity is that 4 > 0 a.e. on [—1, 1], the so-called ErdGs—Turdn condition.
However, there are pure jump measures, and pure singularly continuous measures that are
regular.

We define the nth Christoffel function for

n—1
hn(dp, x) = 1/2 pi(dp. x).
j=0

which satisfies the extremal property
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A classical result of Maté et al. [4] (see also [6]) asserts that if u is regular on [—1, 1], and in
some subinterval [a, b]

b
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then for a.e. x € [a, b],
lirr;onkn(du, x)=au (x)vV1—x2.
n—

If instead we assume that p is regular in [—1, 1], while wu is absolutely continuous in a
neighborhood of some x € (—1, 1), and u’ is continuous at x, then this last limit holds at x.

The aim of this paper is to further investigate asymptotic behavior of Christoffel functions,
associated with orthogonal rational functions. The monograph [2] provides a comprehensive
study of the theory of orthogonal rational functions.

We shall assume that we are given a sequence of extended complex numbers that will serve
as our poles

A={ay,a2,a3,....} CC\[~1,1].

We let mo(x) = 1, and for k > 1,

k
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