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Abstract

This article considers nonuniform support recovery via Orthogonal Matching Pursuit (OMP) from noisy
random measurements. Given m admissible random measurements (of which Subgaussian measurements
is a special case) of a fixed s-sparse signal x in Rn corrupted with additive noise, we show that under a
condition on the minimum magnitude of the nonzero components of x , OMP can recover the support of
x exactly after s iterations with overwhelming probability provided that m = O(s log n). This extends the
results of Tropp and Gilbert (2007) [53] to the case with noise. It is a real improvement over previous results
in the noisy case, which are based on mutual incoherence property or restricted isometry property analysis
and require O(s2 log n) random measurements. In addition, this article also considers sparse recovery from
noisy random frequency measurements via OMP. Similar results can be obtained for the partial random
Fourier matrix via OMP provided that m = O(s(s + log(n − s))). Thus, for some special cases, this
answers the open question raised by Kunis and Rauhut (2008) [34], and Tropp and Gilbert (2007) [53].
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Compressed sensing is a new type of sampling theory, that predicts sparse signal can be
reconstructed from what was previously believed to be incomplete information [10,11,18]. In
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compressed sensing, one considers the following model:

y = Ax + z, (1.1)

where A is a known m × n measurement matrix (with m ≪ n) and z ∈ Rm is a vector
of measurement errors. The goal is to reconstruct the unknown signal x ∈ Rn based on y
and A. Clearly, in general this task is impossible since even if A has full rank then there are
infinitely many solutions to this equation. The situation dramatically changes if x is sparse,
i.e., ∥x∥0 = |{ j : x j ≠ 0}| is small.

The approach for solving this problem probably comes first to mind is to search for the
sparsest vector in the feasible set of possible solutions, which leads to the l0-minimization.
However, solving l0-minimization directly is NP-hard in general and thus is computationally
infeasible [35,39]. Then it is natural to consider the method of basis pursuit (BP), which can
be viewed as a convex relaxation of l0-minimization that consists in solving the following l1-
minimization problem:

min
x̃∈Rn

∥x̃∥1 subject to Ax̃ − y ∈ B, (L1,B)

where B is a bounded set determined by noise structure. For instance, B = {0} in the noiseless
case and B = {r : ∥r∥2 ≤ b} or B = {r : ∥A∗r∥∞ ≤ b∞} in the noisy case. For any

p ∈ [1, ∞), u ∈ Rd , denote ∥u∥p =

d
j=1 |u j |

p
1/p

and ∥u∥∞ = max j |u j |. l1-minimization

problems with different types of constraints have been well studied in the literature [7–14,18–21,
25,24,33]. Donoho et al. [20] considered constrained l1-minimization under l2 constraint. Candès
and Tao [14] introduced the Dantzig Selector, which is a constrained l1-minimization under l∞
constraint. Now it has been shown that l1-minimization recovers all s-sparse vectors with small
or zero errors provided that the measurement matrix A satisfies a restricted isometry property
(RIP) condition δcs ≤ C for some constants c, C > 0 [14,9,12,25,7,24,37]. Let us mention a
few results, the condition δ2s < 0.414 was used in Candès [9], δ2s < 0.453 in Foucart and
Lai [25], δ2s < 0.472 with the provision that s is either large or a multiple of 4 in Cai et al. [7]
and δ2s < 0.493 in Mo and Li [37]. For an m × n matrix A and s ≤ n, the RIP constant δs
[11,13,19] is defined as the smallest number such that for all s-sparse vectors x̃ ∈ Rn ,

(1 − δs)∥x̃∥
2
2 ≤ ∥Ax̃∥

2
2 ≤ (1 + δs)∥x̃∥

2
2.

Note that it is hard to check that a deterministic matrix A has a small RIP constant. So the strategy
is to prove that a random matrix satisfies the RIP condition. It is now well known [11,2,36,49]
that many types of random measurement matrices such as Gaussian matrices or Subgaussian
matrices have RIP constant δs ≤ δ with overwhelming probability provided that

m ≥ Cδ−2s log(n/s). (1.2)

Up to the constant, the lower bounds for Gelfand widths of l1-balls [27,26] show that this
dependence on n and s is optimal. The RIP condition also holds for a rich class of structured
random matrices [11,49,33,48,44,47,43]. The fast multiply partial random Fourier matrix has RIP
constant δs ≤ δ with very high probability provided that m = O(δ−2s(log n)4) [11,49,33]. Based
on its RIP guarantees, with high probability, BP can recover every s-sparse vector with small or
zero errors from O(s log(n/s)) (or with additional log factors in n) random measurements. But
in practice, BP is too expensive in large-scale applications. In fact, numerous researchers have
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