

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 162 (2010) 678-686

www.elsevier.com/locate/jat

On inverse problem leading to second-order linear functionals

Ridha Sfaxi

Faculté des Sciences de Gabès, Département de Mathématiques, Cité Erriadh 6072 Gabès, Tunisie

Received 12 February 2009; received in revised form 12 June 2009; accepted 27 July 2009 Available online 7 August 2009

Communicated by Sergey Krushchev

Abstract

A linear functional \mathfrak{L} is said to be positive-definite if and only if $\langle \mathfrak{L}, p^2 \rangle > 0$, for all non-zero polynomials with real coefficients p. In this paper, we provide a new construction process of a positive-definite linear functional from positive-definite linear functional data. Indeed, for any non-zero real ϵ and any positive-definite linear functional \mathfrak{L} , we show that the linear functional \mathfrak{L}_{ϵ} satisfying $\mathfrak{L}_{\epsilon} - \epsilon \mathfrak{L}'_{\epsilon} = \mathfrak{L}$ is also positive-definite. This process allows us to construct a second-order positive-definite linear functional from a semiclassical positive-definite linear functional. Finally, we give an illustrative example. \mathfrak{C} 2009 Elsevier Inc. All rights reserved.

Keywords: Orthogonal polynomials; Recurrence relations; Semiclassical linear functionals; Second-order linear functionals; Laguerre polynomials; Integral representations

1. Introduction and preliminary results

Let \mathbb{P} be the vector space of polynomials in one variable with complex coefficients and \mathbb{P}' its algebraic dual space. We denote by $\langle \mathfrak{L}, p \rangle$ the action of $\mathfrak{L} \in \mathbb{P}'$ on $p \in \mathbb{P}$ and by $(\mathfrak{L})_n := \langle \mathfrak{L}, x^n \rangle$, $n \ge 0$, the sequence of moments of \mathfrak{L} with respect to the polynomial sequence $\{x^n\}_{n\ge 0}$. Let us define the following operations in \mathbb{P}' . For any linear functional \mathfrak{L} , any polynomial q, and any $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$, let $D\mathfrak{L} = \mathfrak{L}'$, $q\mathfrak{L}$, $\tau_b \mathfrak{L}$, $h_a \mathfrak{L}$, and $(x - c)^{-1}\mathfrak{L}$ be the linear functionals defined by duality

 $\langle \mathfrak{L}', f \rangle := - \langle \mathfrak{L}, f' \rangle,$

E-mail address: ridhasfaxi@yahoo.fr.

^{0021-9045/\$ -} see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2009.07.007

$$\begin{split} \langle q \mathfrak{L}, f \rangle &\coloneqq \langle \mathfrak{L}, qf \rangle, \\ \langle \tau_{-b} \mathfrak{L}, f \rangle &\coloneqq \langle \mathfrak{L}, \tau_b f \rangle = \langle \mathfrak{L}, f(x-b) \rangle, \\ \langle h_a \mathfrak{L}, f \rangle &\coloneqq \langle \mathfrak{L}, h_a f \rangle = \langle \mathfrak{L}, f(ax) \rangle, \\ \langle (x-c)^{-1} \mathfrak{L}, f \rangle &\coloneqq \langle \mathfrak{L}, \theta_c f \rangle = \left\langle \mathfrak{L}, \frac{f(x) - f(c)}{x-c} \right\rangle, \quad f \in \mathbb{P}. \end{split}$$

For any $c \in \mathbb{C}$, we have

$$(x-c)^{-1}(x-c)\mathfrak{L} = \mathfrak{L} - (\mathfrak{L})_0\delta_c, \qquad (1.1)$$

where δ_c is the Dirac mass, defined by $\langle \delta_c, p \rangle = p(c), \ p \in \mathbb{P}$.

Notice that if $\mathfrak{L} \in \mathbb{P}'$ is such that $\mathfrak{L}' = 0$, then $\mathfrak{L} = 0$.

A linear functional \mathfrak{L} is said to be quasi-definite (regular) if we can associate with it a monic polynomial sequence $\{B_n\}_{n\geq 0}$, deg $B_n = n$, $n \geq 0$, such that $\langle \mathfrak{L}, B_n B_m \rangle = r_n \delta_{n,m}$, $m, n \geq 0$, with $r_n \neq 0$, $n \geq 0$. In such a case, $\{B_n\}_{n\geq 0}$ is said to be the monic orthogonal polynomial sequence (MOPS) with respect to \mathfrak{L} .

When $r_n > 0$, for every non-negative integer $n \ge 0$, \mathfrak{L} is said to be positive-definite. Notice that \mathfrak{L} is positive-definite if and only if $\langle \mathfrak{L}, p^2 \rangle > 0$, for every non-zero real polynomial p (see [2]).

If \mathfrak{L} is quasi-definite and A is a polynomial such that $A\mathfrak{L} = 0$, then A = 0.

Definition 1 ([7]). \mathfrak{L} is said to be a second-order linear functional if it is quasi-definite and satisfies

$$\left(\left(\phi\mathfrak{L}\right)' + \psi\mathfrak{L}\right)' + \chi\mathfrak{L} = 0, \tag{1.2}$$

where ϕ , ψ , χ , are polynomials and ϕ monic.

Furthermore, the MOPS $\{B_n\}_{n>0}$ with respect to \mathfrak{L} is also said to be of second order.

The family of second-order linear functionals contains the semiclassical ones (see [7]), when $\chi(x) \equiv 0$ and deg $\psi \ge 1$, i.e., if the quasi-definite linear functional \mathfrak{L} satisfies

$$(\phi \mathfrak{L})' + \psi \mathfrak{L} = 0. \tag{1.3}$$

In such a case, the class of \mathfrak{L} is the minimum value of $\max(\deg(\phi) - 2, \deg(\psi) - 1)$, among all possible pairs (ϕ, ψ) of polynomials satisfying (1.3). The pair (ϕ, ψ) giving the class $s \ge 0$ is unique. When s = 0, the linear functional \mathfrak{L} is said to be classical (Hermite, Laguerre, Bessel, Jacobi) and $\deg \phi \le 2$, $\deg \psi = 1$.

Any shift leaves invariant the semiclassical character. Indeed, the shifted linear functional $\widetilde{\mathfrak{L}} = (h_{a^{-1}} \circ \tau_{-b})\mathfrak{L}$ fulfills the equation $(\widetilde{\phi}\widetilde{\mathfrak{L}})' + \widetilde{\psi}\widetilde{\mathfrak{L}} = 0$, where $\widetilde{\phi}(x) = a^{-\deg\phi}\phi(ax+b)$ and $\widetilde{\psi}(x) = a^{1-\deg\phi}\psi(ax+b)$. For more details, the reader is referred to [7].

When a second-order linear functional \mathfrak{L} is not semiclassical, it is said to be a strict second-order one linear functional.

The theory of the strict second-order linear functionals has not been developed sufficiently. In the literature, we find very few examples of such a kind of linear functionals (see [1,4,7]). We can mention the linear functional u given by the following integral representation [7, p. 126]:

$$\langle u, f \rangle = \frac{1}{\Gamma(1+\alpha)} \int_0^{+\infty} x^{\frac{\alpha-1}{2}} e^{-\sqrt{x}} f(x) dx, \quad f \in \mathbb{P},$$

Download English Version:

https://daneshyari.com/en/article/4607616

Download Persian Version:

https://daneshyari.com/article/4607616

Daneshyari.com