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The linear pencil approach to rational interpolation
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Abstract

It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal
polynomials and Padé approximants at infinity by considering rational interpolants, (bi)orthogonal rational
functions and linear pencils zB − A of two tridiagonal matrices A, B, following Spiridonov and Zhedanov.

In the present paper, as well as revisiting the underlying generalized Favard theorem, we suggest a new
criterion for the resolvent set of this linear pencil in terms of the underlying associated rational functions.
This enables us to generalize several convergence results for Padé approximants in terms of complex Jacobi
matrices to the more general case of convergence of rational interpolants in terms of the linear pencil. We
also study generalizations of the Darboux transformations and the link to biorthogonal rational functions.
Finally, for a Markov function and for pairwise conjugate interpolation points tending to∞, we compute
the spectrum and the numerical range of the underlying linear pencil explicitly.
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1. Introduction

The connection with Jacobi matrices has led to numerous applications of spectral techniques
for self-adjoint operators in the theory of orthogonal polynomials on the real line and Padé
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approximation. In order to give an idea of these interactions consider a Markov function of the
form

ϕ(z) =
∫ b

a

dµ(t)
z − t

,

where a, b are real numbers and dµ(t) is a probability measure; that is,
∫ b

a dµ(t) = 1. It is
well known [1,32] that one can expand such a Markov function ϕ into the following continued
fraction:

ϕ(z) =
1

z − b0 −
a2

0

z−b1−
a2

1

...

=
1

z − b0
−

a2
0

z − b1
−

a2
1

z − b2
− · · · , (1.1)

where b j , a j ∈ R, a j > 0. Continued fractions of the form (1.1) are called J -fractions [23,32].
To the continued fraction (1.1) one can associate a Jacobi matrix A acting in the space of square
summable sequences and its truncation A[0:n]:

A =


b0 a0
a0 b1 a1

a1 b2
. . .

. . .
. . .

 , A[0:n−1] =


b0 a0

a0 b1
. . .

. . .
. . . an−2

an−2 bn−1

 .
Then it is known that ϕ(z) = 〈(z I − A)−1e0, e0〉, and the nth convergent of the above continued
fraction is given by

pn(z)

qn(z)
= 〈(z I − A[0:n−1])

−1e0, e0〉 =
1

z − a0
− · · · −

b2
n−2

z − an−1
,

where the column vector e0 = (1, 0, . . .)> is the first canonical vector of suitable size, qn
are orthogonal polynomials with respect to dµ, and pn are polynomials of the second kind;
see [1,25,26]. It is an elementary fact of continued fraction theory that

ϕ(z)−
pn(z)

qn(z)
= O

(
1

z2n+1

)
z→∞
; (1.2)

see for instance [1,4,23]. Relation (1.2) means that the rational function pn/qn is the nth
diagonal Padé approximant to ϕ at infinity. Consequently, the locally uniform convergence of
diagonal Padé approximants appears as the strong resolvent convergence of the finite matrix
approximations A[0:n]. For instance, one knows that pn/qn → ϕ in capacity in the resolvent
set of A given by the complement of the support of µ, and locally uniformly outside the
numerical range of A given by the convex hull of the spectrum of A; see for instance [29]. In
addition, it should be mentioned here that an operator approach for proving convergence of Padé
approximants for rational perturbations of Markov functions was proposed in [17]; see also [16].

If ϕ is no longer a Markov function but has distinct nth diagonal Padé approximants at infinity,
we may still recover these approximants as convergents of a continued fraction of type (1.1), but
now in general a j , b j ∈ C, a j 6= 0; see [32]. Thus, A becomes complex symmetric, and is
called a complex Jacobi matrix. There is no longer a natural candidate for the spectrum of A,
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