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Abstract

Let λ be a positive number, and let (x j : j ∈ Z) ⊂ R be a fixed Riesz-basis sequence, namely, (x j ) is

strictly increasing, and the set of functions {R 3 t 7→ eix j t
: j ∈ Z} is a Riesz basis (i.e., unconditional

basis) for L2[−π, π]. Given a function f ∈ L2(R) whose Fourier transform is zero almost everywhere
outside the interval [−π, π], there is a unique sequence (a j : j ∈ Z) in `2(Z), depending on λ and f , such
that the function

Iλ( f )(x) :=
∑
j∈Z

a j e−λ(x−x j )
2
, x ∈ R,

is continuous and square integrable on (−∞,∞), and satisfies the interpolatory conditions Iλ( f )(x j ) =

f (x j ), j ∈ Z. It is shown that Iλ( f ) converges to f in L2(R), and also uniformly on R, as λ → 0+. In
addition, the fundamental functions for the univariate interpolation process are defined, and some of their
basic properties, including their exponential decay for large argument, are established. It is further shown
that the associated interpolation operators are bounded on `p(Z) for every p ∈ [1,∞].
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1. Introduction

This paper, one in the long tradition of those involving the interpolatory theory of functions,
is concerned with interpolation of data via the translates of a Gaussian kernel. The motivation
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for this work is twofold. The first is the theory of Cardinal Interpolation, which deals with
the interpolation of data prescribed at the integer lattice, by means of the integer shifts of a
single function. This subject has a rather long history, and it enjoys interesting connections
with other branches of pure and applied mathematics, e.g. Toeplitz matrices, Function Theory,
Harmonic Analysis, Sampling Theory. When the underlying function (whose shifts form the
basis for interpolation) is taken to be the so-called Cardinal B-Spline, one deals with Cardinal
Spline Interpolation, a subject championed by Schoenberg, and taken up in earnest by a host of
followers. More recently, it was discovered that there is a remarkable analogy between cardinal
spline interpolation and cardinal interpolation by means of the (integer) shifts of a Gaussian, a
survey of which may be found in [1]. The current article may also be viewed as a contribution
in this vein; it too explores further connections between the interpolatory theory of splines and
that of the Gauss kernel, but does so in the context of interpolation at point sets which are more
general than the integer lattice. This brings us to the second, and principal, motivating influence
for our work, namely the researches of Lyubarskii and Madych [2]. This duo have considered
spline interpolation at certain sets of points which are generalizations of the integer lattice, and
we were prompted by their work to ask if the analogy between splines and Gaussians, very much
in evidence in the context of cardinal interpolation, persists in this ‘non-uniform’ setting also.
Our paper seeks to show that this is indeed the case. The influence of [2] on our work goes
further. Besides providing us with the motivating question for our studies, it also offered us an
array of basic tools which we have modified and adapted.

We shall supply more particulars – of a technical nature – concerning the present paper later
in this introductory section, soon after we finish discussing some requisite general material.

Throughout this paper L p(R) and L p[a, b], 1 ≤ p ≤ ∞, will denote the usual Lebesgue
spaces over R and the interval [a, b], respectively. We shall let C(R) be the space of continuous
functions on R, and C0(R) will denote the space of f ∈ C(R) for which limx→±∞ f (x) = 0.
An important tool in our analysis is the Fourier Transform, so we assemble some of its basic
facts; our sources for this material are [3,4]. If g ∈ L1(R), then the Fourier transform of g, ĝ, is
defined as follows:

ĝ(x) :=
∫
∞

−∞

g(t)e−ixt dt, x ∈ R. (1)

The Fourier transform of a g ∈ L2(R) will be denoted by F[g]. It is known that F is a linear
isomorphism on L2(R), and that the following hold:

‖F[g]‖2L2(R) = 2π‖g‖2L2(R), g ∈ L2(R); F[g] = ĝ, g ∈ L2(R) ∩ L1(R). (2)

Moreover, if g ∈ L2(R) ∩C(R) and F[g] ∈ L1(R), then the following inversion formula holds:

g(t) =
1

2π

∫
∞

−∞

F[g](x)eixt dx, t ∈ R. (3)

The functions we seek to interpolate are the so-called bandlimited or Paley–Wiener functions.
Specifically, we define

PWπ :=
{
g ∈ L2(R) : F[g] = 0 almost everywhere outside [−π, π]

}
.

Let g ∈ PWπ . The Fourier inversion formula implies

g(t) =
1

2π

∫
∞

−∞

F[g](x)eixt dx =
1

2π

∫ π

−π

F[g](x)eixt dx, (4)
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