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a b s t r a c t

Regularized empirical risk minimization including support vector
machines plays an important role in machine learning theory. In
this paper regularized pairwise learning (RPL) methods based on
kernels will be investigated. One example is regularizedminimiza-
tion of the error entropy loss which has recently attracted quite
some interest from the viewpoint of consistency and learning rates.
This paper shows that such RPL methods and also their empirical
bootstrap have additionally good statistical robustness properties,
if the loss function and the kernel are chosen appropriately. We
treat two cases of particular interest: (i) a bounded and non-convex
loss function and (ii) an unbounded convex loss function satisfying
a certain Lipschitz type condition.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Regularized empirical risk minimization based on kernels has attracted a lot of interest during the
last decades in statistical machine learning. To fix ideas, let Dn = ((x1, y1), . . . , (xn, yn)) be a given
data set, where the value xi denotes the input value and yi denotes the output value of the ith data
point. Let L be a loss function which is typically of the form L(x, y, f (x)), where f (x) denotes the
predicted value for y, when x is observed, and the real-valued function f is unknown.Many regularized
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learning methods are then defined as minimizers of the optimization problem

inf
f∈F

1
n

n
i=1

L(xi, yi, f (xi)) + pen(λ, f ), (1.1)

where the set F consists of real-valued functions f , λ > 0 is a regularization constant, and
pen(λ, f ) ≥ 0 is some regularization term to avoid overfitting for the case, thatF is rich. One example
is that F is a reproducing kernel Hilbert space H and pen(λ, f ) = λ∥f ∥2

H , see e.g. Vapnik [48,49],
Poggio and Girosi [40], Wahba [50], Schölkopf and Smola [44], Cucker and Zhou [14], Christmann
and Steinwart [9,10], Steinwart and Christmann [46] and the references cited there. Regularized
empirical risk minimization based on kernels has also been investigated for additivemodels. We refer
to Christmann and Hable [7] for results on consistency and robustness and to Christmann and Zhou
[12] for fast learning rates.

In recent years there is quite some interest in related learning methods where a pairwise loss
function is used, which yields optimization problems like

inf
f∈H

1
n2

n
i=1

n
j=1

L(xi, yi, xj, yj, f (xi), f (xj)) + λ∥f ∥2
H (1.2)

or asymptotically equivalent versions of it. In other words, the estimator for f is defined as the
minimizer of the sum of a V -statistic of degree 2 and the regularizing term λ∥f ∥2

H , see e.g. Serfling
[45]. An example of this class of learningmethods occurswhen one is interested inminimizing Renyi’s
entropy of order 2, see e.g. Hu et al. [32], Fan et al. [23], and Ying and Zhou [54] for consistency and
fast learning rates. Another example arises from ranking algorithms, see e.g. Clemencon et al. [13]
and Agarwal and Niyogi [1]. Other examples include gradient learning, and metric and similarity
learning, see e.g. Mukherjee and Zhou [39], Xing et al. [53], and Cao et al. [5]. However, much less
theory is currently known for such regularized learning methods given by (1.2) based on a pairwise
loss function than for the more classical problem (1.1) using a standard loss function. This is true in
particular for statistical robustness aspects. Statistical robustness is one important facet of a statistical
method, especially if the data quality is only moderate or unknown, which is often the case in the so-
called big data situation.

The main goal of this paper is to show that such regularized learning methods given by (1.2) have
nice statistical robustness properties if a bounded and continuous kernel is used in combination with
a convex, smooth, and separately Lipschitz continuous (see Definition 2.5) pairwise loss function. We
also establish a representer theorem for such regularized pairwise learningmethods, becausewe need
it for our proofs, but the representer theorem may also be helpful to further research.

The rest of the paper has the following structure. In Section 2, we define pairwise loss functions,
their corresponding risks, derive some basic properties of pairwise loss functions and their risks, and
give some examples. In Section 3 we define regularized pairwise learning (RPL) methods treated in
this paper and derive results on existence and uniqueness. We will show that shifted loss functions
(defined in (3.9)) are useful to define RPL methods on the set of all probability measures without
making moment assumptions. This is of course desirable, because the probability measure chosen by
nature to generate the data is completely unknown in machine learning theory. Section 4 contains a
representer theorem for RPL methods, which is our first main result, see Theorem 4.3. This result
is interesting in its own right, but we use it as a tool to prove our statistical robustness results
in Section 5. For a bounded kernel in combination with a bounded, but not necessarily convex
pairwise loss function, we show that RPL methods have a bounded maxbias, see Theorem 5.1. For a
bounded continuous kernel in combination with a convex pairwise loss function, which is separately
Lipschitz continuous in the sense of Definition 2.5, we can formulate the two other main results of
this paper: Theorem 5.3 shows that the RPL operator has a bounded Gâteaux derivative and hence
a bounded influence function, see Corollary 5.4, and Theorem 5.5 shows that RPL methods and even
their empirical bootstrap approximations are qualitatively robust, if some non-stochastic conditions
are satisfied. Hence these statistical robustness properties of RPL methods hold for all probability
measures provided that weak conditions on the input space, on the output space, on the kernel, and
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