

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

L_p - and $S_{p,q}^rB$ -discrepancy of the symmetrized van der Corput sequence and modified Hammersley point sets in arbitrary bases

Ralph Kritzinger

Institut für Finanzmathematik und angewandte Zahlentheorie, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria

ARTICLE INFO

Article history: Received 14 July 2015 Accepted 28 October 2015 Available online 6 November 2015

Keywords:
Discrepancy
Besov spaces
Van der Corput sequence
Hammersley point set

ABSTRACT

We study the local discrepancy of a symmetrized version of the well-known van der Corput sequence and of modified two-dimensional Hammersley point sets in arbitrary base b. We give upper bounds on the norm of the local discrepancy in Besov spaces of dominating mixed smoothness $S_{p,q}^rB([0,1)^s)$, which will also give us bounds on the L_p -discrepancy. Our sequence and point sets will achieve the known optimal order for the L_p - and $S_{p,q}^rB$ -discrepancy. The results in this paper generalize several previous results on L_p - and $S_{p,q}^rB$ -discrepancy estimates and provide a sharp upper bound on the $S_{p,q}^rB$ -discrepancy of one-dimensional sequences for r>0. We will use the b-adic Haar function system in the proofs.

© 2016 Published by Elsevier Inc.

1. Introduction and statement of the results

For an *N*-element point set $\mathcal{P} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{N-1}\}$ in the *s*-dimensional unit interval $[0, 1)^s$ the local discrepancy $D_N(\mathcal{P}, \mathbf{t})$ is defined as

$$D_N(\mathcal{P}, \boldsymbol{t}) := \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}_{[\boldsymbol{0}, \boldsymbol{t})}(\boldsymbol{x}_n) - \prod_{i=1}^{s} t_i.$$

In this expression, for $\mathbf{t} = (t_1, \dots, t_s) \in [0, 1]^s$, the notation $[\mathbf{0}, \mathbf{t})$ means the s-dimensional interval $[0, t_1) \times \dots \times [0, t_s)$ with volume $\prod_{i=1}^s t_i$ and $\mathbf{1}_I$ denotes the indicator function of the interval

 $I \subseteq [0, 1]^s$. For an infinite sequence $\mathscr{S} = (\mathbf{x}_n)_{n \ge 0}$ of elements in $[0, 1)^s$ the local discrepancy $D_N(\mathscr{S}, \mathbf{t})$ is defined as the local discrepancy of its first N elements.

We denote the norm of the local discrepancy in a normed space X of functions on $[0, 1)^s$ by $||D_N(\mathcal{P}, \cdot)||X||$, where we must require $D_N(\mathcal{P}, \cdot) \in X$.

In this paper we are interested in particular normed spaces, namely the $L_p([0, 1)^s)$ spaces and the Besov spaces $S_{p,q}^r B([0, 1)^s)$ of dominating mixed smoothness. The definition of the latter is given in Section 4. For $p \in [1, \infty]$, the $L_p([0, 1)^s)$ space is defined as the collection of all functions f on $[0, 1)^s$ with finite $L_p([0, 1)^s)$ norm, which for $1 \le p < \infty$ is defined as

$$||f| L_p([0, 1)^s)|| := \left(\int_{[0, 1)^s} |f(t)|^p dt \right)^{\frac{1}{p}},$$

and for $p = \infty$ is given by

$$||f| L_{\infty}([0, 1)^{s})|| := \sup_{t \in [0, 1]^{s}} |f(t)|.$$

We speak of $\|D_N(\mathcal{P},\cdot)|L_p([0,1)^s)\|$ and $\|D_N(\mathcal{P},\cdot)|S_{p,q}^rB([0,1)^s)\|$ as the L_p - and the $S_{p,q}^rB$ -discrepancy of a point set $\mathcal{P}\in[0,1)^s$, respectively. An analogous notation is used for sequences $s\in[0,1)^s$. The L_∞ -discrepancy is the well-studied star discrepancy, but in this paper we will assume that $p\in[1,\infty)$.

The L_p -discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one, see e.g. [10,19,25]. It is also related to the worst-case integration error of a quasi-Monte Carlo rule, see e.g. [7,21,26]. The $S_{p,q}^r B$ -discrepancy is related to the errors of quasi-Monte Carlo algorithms for numerical integration on spaces of dominating mixed smoothness, see e.g. [31].

It is well known that for every $p \in (1, \infty)$ and for all $s \in \mathbb{N}$ there exist positive numbers $c_{p,s}$ and $c'_{p,s}$ with the property that for every $N \ge 2$ any N-element point set \mathcal{P} in $[0, 1)^s$ satisfies

$$||D_N(\mathcal{P},\cdot)| L_p([0,1)^s)|| \ge c_{p,s} \frac{(\log N)^{\frac{s-1}{2}}}{N},$$
 (1)

and for every sequence δ in $[0, 1)^s$ we have

$$\left\|D_N(\mathcal{S},\cdot)\mid L_p([0,1)^s)\right\|\geq c_{p,s}'\frac{(\log N)^{\frac{s}{2}}}{N}\quad\text{for infinitely many }N\in\mathbb{N},\tag{2}$$

where log denotes the natural logarithm. The inequality (1) was shown by Roth [28] for p=2 (and therefore for $p\in(2,\infty)$ because of the monotonicity of the L_p norms) and Schmidt [29] for $p\in(1,2)$. Proinov [27] could prove (2) based on the results of Roth and Schmidt. Halász [14] showed that the bounds (1) and (2) also hold for the L_1 -discrepancy of two-dimensional point sets and one-dimensional sequences, respectively. There exist point sets in every dimension s with the order of the L_p -discrepancy of $(\log N)^{\frac{s-1}{2}}/N$ for $p\in(1,\infty)$ (see [2] for the first existence result), which shows that the lower bound given in (1) is sharp. Chen and Skriganov [3] gave for the first time for every integer $N\geq 2$ and every dimension $s\in\mathbb{N}$, explicit constructions of finite N-element point sets in $[0,1)^s$ whose L_2 -discrepancy achieves an order of convergence of $(\log N)^{\frac{s-1}{2}}/N$. The result in [3] was extended to the L_p -discrepancy for $p\in(1,\infty)$ by Skriganov [30]. The inequality (2) is also sharp for one-dimensional sequences (see e.g. [18]). Moreover, it is sharp for the L_2 -discrepancy in all dimensions (see [9,8]). Showing sharpness for all $p\in(1,\infty)$ in all dimensions is currently work in progress.

There are also known lower and upper bounds for the $S_{p,q}^rB$ -discrepancy in arbitrary dimensions. Triebel, who initiated the study of the local discrepancy in other spaces such as the Besov spaces and Triebel–Lizorkin spaces of dominating mixed smoothness in [31,32], showed that for all $1 \le p$, $q \le \infty$ and $r \in \mathbb{R}$ satisfying $\frac{1}{p} - 1 < r < \frac{1}{p}$ and $q < \infty$ if p = 1 and q > 1 if $p = \infty$ there exists a constant $c_1 > 0$ such that for any $N \ge 2$ the local discrepancy of any N-element point set \mathcal{P} in $[0,1)^s$ satisfies

$$||D_N(\mathcal{P},\cdot)| |S_{p,q}^r B([0,1)^s)|| \ge c_1 N^{r-1} (\log N)^{\frac{s-1}{q}}.$$
(3)

Download English Version:

https://daneshyari.com/en/article/4608479

Download Persian Version:

https://daneshyari.com/article/4608479

<u>Daneshyari.com</u>