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upper bounds on the norm of the local discrepancy in Besov spaces
of dominating mixed smoothness S;.qB([O, 1)%), which will also
give us bounds on the L,-discrepancy. Our sequence and point
Besov spaces sets will achieve the known optimal order for the L,- and SquB-
Van der Corput sequence discrepancy. The results in this paper generalize several previous
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sharp upper bound on the S’ B discrepancy of one-dimensional
sequences for r > 0. We w111 use the b-adic Haar function system
in the proofs.
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1. Introduction and statement of the results

For an N-element point set » = {xo, X1, ..., Xy_1} in the s-dimensional unit interval [0, 1)° the
local discrepancy Dy (&, t) is defined as

1 N—1 s
Du(. 1) = = 3 Too () — [ ]t
n=0 i=1

In this expression, fort = (t1, ..., t;) € [0, 1]°, the notation [0, t) means the s-dimensional interval
[0,t1) x --- x [0, t;) with volume ]_[f=1 t; and 1; denotes the indicator function of the interval
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I C [0, 1F°. For an infinite sequence 8 = (X,),>0 of elements in [0, 1)° the local discrepancy Dy (4, t)
is defined as the local discrepancy of its first N elements.

We denote the norm of the local discrepancy in a normed space X of functions on [0, 1)° by
IDn (2, -) | X||, where we must require Dy (£, -) € X.

In this paper we are interested in particular normed spaces, namely the L, ([0, 1)) spaces and the
Besov spaces S;,qB([O, 1)°) of dominating mixed smoothness. The definition of the latter is given in
Section 4. For p € [1, oo], the L, ([0, 1)°) space is defined as the collection of all functions f on [0, 1)*
with finite L,([0, 1)°) norm, which for 1 < p < oo is defined as

1
If 1 L0, 19| = ( / If (£)Pd t)” :
[0,1)
and for p = oo is given by
If | Lo ([0, D®) | == sup [f(D)I.
te[0,1]°

We speak of ||Dy(,-) | L,([0, 1)*)| and |Dn(#,-)| S} B([0,1)%)| as the L,- and the S B-
discrepancy of a point set » € [0, 1)°, respectively. An analogous notation is used for sequences
4 € [0, 1)°. The Lo -discrepancy is the well-studied star discrepancy, but in this paper we will assume
thatp € [1, 00).

The Ly-discrepancy is a quantitative measure for the irregularity of distribution of a sequence
modulo one, see e.g. [10,19,25]. It is also related to the worst-case integration error of a quasi-
Monte Carlo rule, see e.g. [7,21,26]. The S;’qB—discrepancy is related to the errors of quasi-Monte Carlo
algorithms for numerical integration on spaces of dominating mixed smoothness, see e.g. [31].

It is well known that for every p € (1, 00) and for all s € N there exist positive numbers ¢, ; and
c!/,,s with the property that for every N > 2 any N-element point set & in [0, 1)° satisfies

s—1
(logN) =
IDn (2. ) | Ly ([0, 1)9)]| = S VR (1
and for every sequence 4 in [0, 1)° we have
logN)2
IDn (8, ) 1 L, ([0, 1))|| = C!’,,S% for infinitely many N € N, (2)

where log denotes the natural logarithm. The inequality (1) was shown by Roth [28] for p = 2
(and therefore for p € (2, 0o) because of the monotonicity of the L, norms) and Schmidt [29] for
p € (1, 2). Proinov [27] could prove (2) based on the results of Roth and Schmidt. Halasz [ 14] showed
that the bounds (1) and (2) also hold for the L;-discrepancy of two-dimensional point sets and one-
dimensional sequences, respectively. There exist point sets in every dimension s with the order of the

L,-discrepancy of (log N)%/N for p € (1, 0co) (see [2] for the first existence result), which shows
that the lower bound given in (1) is sharp. Chen and Skriganov [3] gave for the first time for every
integer N > 2 and every dimension s € N, explicit constructions of finite N-element point sets

in [0, 1)° whose L,-discrepancy achieves an order of convergence of (log N)%/N. The result in [3]
was extended to the Ly-discrepancy for p € (1, 00) by Skriganov [30]. The inequality (2) is also
sharp for one-dimensional sequences (see e.g. [18]). Moreover, it is sharp for the L,-discrepancy in
all dimensions (see [9,8]). Showing sharpness for all p € (1, co) in all dimensions is currently work in
progress.

There are also known lower and upper bounds for the S[C, qB—discrepancy in arbitrary dimensions.
Triebel, who initiated the study of the local discrepancy in other spaces such as the Besov spaces and
Triebel-Lizorkin spaces of dominating mixed smoothness in [31,32], showed thatforall1 < p,q < o0
and r € R satisfying 117 —1<r<landg < o0ifp=1andq > 1ifp = oo there exists a constant

¢1 > 0 such that for any N > 2 the local discrepancy of any N-element point set & in [0, 1)° satisfies

[N (2, ) 1S] B0, 1) = iN"(log N) T . (3)
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