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a b s t r a c t

The elastic net is a regularized least squares regressionmethod that
has been widely used in learning and variable selection. The elas-
tic net regularization linearly combines an l1 penalty term (like the
lasso) and an l2 penalty term (like ridge regression). The l1 penalty
term enforces sparsity of the elastic net estimator, whereas the
l2 penalty term ensures democracy among groups of correlated
variables. Compressed sensing is currently an extensively studied
technique for efficiently reconstructing a sparse vector frommuch
fewer samples/observations. In this paper we study the elastic net
in the setting of sparse vector recovery. For recovering sparse vec-
tors from few observations by employing the elastic net regres-
sion, we prove in this paper that the elastic net estimator is stable
provided that the underlying measurement/design matrix satisfies
the commonly required restricted isometry property or the sparse
approximation property. It is well known that many indepen-
dent random measurement matrices satisfy the restricted isome-
try property while random measurement matrices generated by
highly correlated Gaussian random variables satisfy the sparse
approximation property. As a byproduct, we establish a uniform
bound for the grouping effect of the elastic net. Some numerical
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experiments are provided to illustrate our theoretical results on
stability and grouping effect of the elastic net estimator.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The standard model of linear regression can be stated as follows:

y = Xβ∗
+ z, (1.1)

where y ∈ Rn is an observed signal/vector, X ∈ Rn×p is a given measurement/design matrix, β∗
∈ Rp

is an unknown true signal/vector to be recovered, and z is the white Gaussian noise term which is a
vector of independent normal/Gaussian random variables.

In the setting of compressed sensing, one is interested in the linear regression model (1.1) for the
particular case that n is much smaller than p; that is, the dimension p of the ambient space of the
unknown signal β∗ is large but the number n of the observations y is extremely small. If the unknown
signal β∗ is sparse, the central task of compressed sensing is to recover in a stable way the unknown
sparse true signal β∗ from its few noisy observations/measurements y (see e.g. [8,15]).

To provide some necessary background for compressed sensing and the elastic net, we first recall
some definitions. Let β = (β[1], . . . , β[p])

T denote a vector in Rp. For 0 < q < ∞, the lq norm of
β is ∥β∥q =


|β[1]|

q
+ · · · + |β[p]|

q
1/q, and the l∞ norm of β is ∥β∥∞ = max{|β[1]|, . . . , |β[p]|}. By

supp(β) we denote the support of β, i.e., the set {1 ≤ j ≤ p : β[j] ≠ 0}. Moreover, # supp(β) is
defined to be the cardinality of the set supp(β), that is, the number of nonzero entries in the vector β.
We further define the l0 ‘‘norm’’ of β to be ∥β∥0 = # supp(β).

For a nonnegative integer s, we say that a vector β ∈ Rp is s-sparse if the number of all its nonzero
entries is no more than s, that is, ∥β∥0 ≤ s. For a positive integer s, we say that a measurement matrix
X ∈ Rn×p has the restricted isometry property (RIP) with RIP constant 0 < δs < 1 if

(1 − δs)∥β∥
2
2 ≤ ∥Xβ∥

2
2 ≤ (1 + δs)∥β∥

2
2, for all β ∈ Σs, (1.2)

where the set Σs of all s-sparse vectors in Rp is defined to be

Σs := {γ ∈ Rp
: ∥γ∥0 ≤ s}. (1.3)

The restricted isometry property in (1.2) with a small RIP constant δs implies that every group of arbi-
trary s column vectors from the measurement matrix X must be nearly orthogonal to each other. It is
well known [8] that with overwhelming probability, a measurement matrix X generated by many
known independent random variables has the restricted isometry property with a small RIP con-
stant. If the measurement matrix X has the restricted isometry property with RIP constants satisfying
δs + δ2s + δ3s < 1, [8, Theorem 1.4] shows that one can always recover an s-sparse signal β∗ from few
measures in y in (1.1). Even for the case n = O(s ln(p/s)) so that the number n ofmeasurements in y is
much less than the number p of all entries in the unknown true signalβ∗, a randommeasurementma-
trix can satisfy the restricted isometry property with RIP constants satisfying δs + δ2s + δ3s < 1 with
overwhelming probability. Compressed sensing employs the l1 regularization technique which has
been adopted in the basis pursuit [15] and in the lasso [37]. The lasso is an l1 penalized least squares
regression method that can fit the observation data well while seeking a sparse solution simultane-
ously. However, it is known that the lasso may not be an ideal method if a group of columns of a
measurement matrix is highly correlated, for example, in microarray data analysis [40]. To avoid such
a limitation of lasso, the elastic net has been proposed in Zou and Hastie [40] by linearly combining
an l1 penalty term (like lasso) and an l2 penalty term (like ridge regression). Through experiments, the
elastic net shows the ‘‘grouping effect’’ which could include automatically all the highly correlated
variables in a group. The theoretical properties of the grouping effect of the elastic net have been
studied in [40] and further improved in [39].
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