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a b s t r a c t

In this paper, the center-selection strategy of spherical radial basis
function networks (SRBFNs) is considered. To approximate func-
tions in the Bessel-potential Sobolev classes, we provide two lower
bounds of nonlinear SRBFN approximation. In the first one, we
prove that, up to a logarithmic factor, the lower bound of SRBFN ap-
proximation coincides with the Kolmogorov n-width. In the other
one, we prove that if a pseudo-dimension assumption is imposed
on the activation function, then the logarithmic factor can even be
omitted. These results together with the well known Jackson-type
inequality of SRBFN approximation imply that the center-selection
strategy does not affect the approximation capability of SRBFNs
very much, provided the target function belongs to the Bessel-
potential Sobolev classes. Thus, we can choose centers only for the
algorithmic factor. Hence, a linear SRBFN approximant whose cen-
ters are specified before the training is recommended.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fitting spherical data arising from sampling an unknown function defined on the sphere comes
up frequently in applied problems. Examples include the study of seismic signals, gravitational
phenomenon, solar corona andmedical imaging of the brain. A common procedure to fitting spherical
data can boil down to two steps: choosing a specific class of functions to build up the candidates and
selecting the final estimate from the candidates by using the spherical data (this process is also called
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as ‘‘training’’). Therefore, the performance of the final estimate depends heavily on the quality of the
candidates, which can bemeasured by the approximation capability of the selected class of functions.

The success of the radial basis function networks methodology in Euclidean space derives from its
ability to generate approximants from data having arbitrary geometry. Thus, it is natural to introduce
spherical radial basis function networks (SRBFNs) to tackle spherical data. This method has been
extensively used in gravitational phenomenon [7], image processing [35] and learning theory [27].
An SRBFN can be mathematically represented as

Sn(x) :=

n
i=1

ciφ(ξi · x), x ∈ Sd (1.1)

where ci ∈ R is the connection weight, φ is the activation function, {ξi}ni=1 ⊂ Sd is the set of centers,
and Sd is the unit sphere in Rd+1.

Obviously, the approximation capability of SRBFNs depends on the activation function and centers.
A seminal paper concerning the activation function selection is [34], in which Sun and Cheney
deduced the sufficient and necessary conditions of the activation function to guarantee the universal
approximation property of corresponding SRBFNs. Consequently, Mhaskar et al. [25] deduced a
Jackson-type inequality of SRBFN approximation under the condition that the Fourier–Legendre
coefficients of the activation function are not trivial. Later, Le Gia et al. [11] provided an upper bound
error estimate for least-square SRBFN approximation with positive definition activation function by
using the topological relation between Sd and the d + 1-dimensional unit ball Bd+1. For more details
on this topic, the readers are referred to [5,12,13,15,28,30,29].

Compared with the activation function selection, the center-selection strategy of SRBFNs is more
important and difficult, since it determines the computational burden of the training process. To be
detailed, if centers are specified before the training, then solving a simple linear optimization problem
can deduce the final estimate. If centers need to be tuned in the process of training, then we should
tackle a nonlinear optimization problem that usually requires more computation. Up till now, there
are roughly three categories of center-selection strategies. The first one is the spherical basis function
(SBF)method (or zonal function networksmethod) that uses the linear combination of kernels located
at points in a given scattered data. It follows from the definition that this type of networks is a linear
approximant. Thus, we can use a linear algorithm to get the globally optimal solution. In particular,
it was pointed out in [11,27] that solutions to the regularized least squares and support vector
machine algorithms are SBFs. The second one is the minimal energy method that focuses on selecting
centers by minimizing some quantities concerning the energy of the points. Examples include the
Riesz minimal energy [9], φ-Riesz minimum energy [33] and other low discrepancy energies [32]. It
should be highlighted that whether the SRBFN whose centers are minimal energy points is a linear
approximant depends on the definition of energy. If the energy is independent of the data, such
as the Riesz minimal energy, then the corresponding SRBFN is a linear approximant. The last one
aims to select centers via training, which naturally results two types of parameters, the connection
weights and centers, and makes the corresponding SRBFN be a nonlinear approximant. The main
advantages of this approach is that the nonlinear SRBFN sometimes leads to better approximation
capability [14,26] and may circumvent the well known curse of dimensionality [1]. However, due to
their nonlinearity, the implementation and training of the nonlinear SRBFN are much more difficult
than its linear counterpart.

Our focus in this paper is not on selecting the most appropriate centers for a specified learning
task, but on quantifying different approximation capabilities between linear and nonlinear SRBFNs.
To this end, we should at first provide an answer to the following question: Is the approximation
capability of the nonlinear SRBFN essentially better than that of linear SRBFN? Such a question is
not new in the classical neural network approximation. For instance, in [17,18], Maiorov proved that
the approximation capabilities of the nonlinear neural network and radial basis function network
manifolds are better than that of arbitrary linear space with the same number of parameters, as the
approximation errors of these nonlinear manifolds are essentially smaller than the Kolmogorov n-
width [31]. A similar conclusion can also be found in [10]. The main novelty of this paper is to prove
that similar conclusion is not valid for SRBFNs. In fact, we derive two lower bounds of nonlinear
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