
Journal of Complexity 36 (2016) 1–30

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Even faster integer multiplication
David Harvey a, Joris van der Hoeven b,∗, Grégoire Lecerf b
a School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
b CNRS, Laboratoire d’informatique, École polytechnique, 91128 Palaiseau Cedex, France

a r t i c l e i n f o

Article history:
Received 29 June 2015
Accepted 18 February 2016
Available online 15 March 2016

Keywords:
Integer multiplication
Algorithm
Complexity bound
FFT

a b s t r a c t

We give a new algorithm for the multiplication of n-bit integers in
the bit complexity model, which is asymptotically faster than all
previously known algorithms. More precisely, we prove that two
n-bit integers can be multiplied in time O(n log n K log∗ n), where
K = 8 and log∗ n = min


k ∈ N : log k×. . . log n 6 1


. Assuming

standard conjectures about the distribution of Mersenne primes,
we give yet another algorithm that achieves K = 4. The fastest
previously known algorithm was due to Fürer, who proved the
existence of a complexity bound of the above form for some finite
K . We show that an optimised variant of Fürer’s algorithm achieves
only K = 16, suggesting that our new algorithm is faster than
Fürer’s by a factor of 2log∗ n.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let I(n) denote the cost of multiplying two n-bit integers in the deterministic multitape Turing
model [37] (commonly called ‘‘bit complexity’’). Previously, the best known asymptotic bound for
I(n) was due to Fürer [18,19]. He proved that there is a constant K > 1 such that

I(n) = O(n log n K log∗ n), (1)

∗ Corresponding author.
E-mail addresses: d.harvey@unsw.edu.au (D. Harvey), vdhoeven@lix.polytechnique.fr (J. van der Hoeven),

lecerf@lix.polytechnique.fr (G. Lecerf).

http://dx.doi.org/10.1016/j.jco.2016.03.001
0885-064X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jco.2016.03.001
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2016.03.001&domain=pdf
mailto:d.harvey@unsw.edu.au
mailto:vdhoeven@lix.polytechnique.fr
mailto:lecerf@lix.polytechnique.fr
http://dx.doi.org/10.1016/j.jco.2016.03.001


2 D. Harvey et al. / Journal of Complexity 36 (2016) 1–30

where log x = ln x denotes the natural logarithm of x and log∗ x the iterated logarithm, i.e.,

log∗ x := min{k ∈ N : log◦k x 6 1}, (2)

log◦k
:= log ◦ · · ·

k×
◦ log,

for any x ∈ R with x > 0. The main contribution of this paper is a new algorithm that yields the
following improvement.

Theorem 1. For n → ∞ we have

I(n) = O(n log n 8log∗ n).

Fürer suggested several methods to minimise the value of K in his algorithm, but did not give an
explicit bound for K . In Section 7 of this paper, we outline an optimised variant of Fürer’s algorithm
that achieves K = 16. We do not know how to obtain K < 16 using Fürer’s approach. This suggests
that the new algorithm is faster than Fürer’s by a factor of 2log∗ n.

The idea of the new algorithm is remarkably simple. Given two n-bit integers, we split them
into chunks of exponentially smaller size, say around log n bits, and thus reduce to the problem
of multiplying integer polynomials of degree O(n/ log n) with coefficients of bit size O(log n). We
multiply the polynomials using discrete Fourier transforms (DFTs) over C, with a working precision
of O(log n) bits. To compute the DFTs, we decompose them into ‘‘short transforms’’ of exponentially
smaller length, say length around log n, using the Cooley–Tukey method. We then use Bluestein’s
chirp transform to convert each short transform into a polynomial multiplication problem overC, and
finally convert back to integer multiplication via Kronecker substitution. These much smaller integer
multiplications are handled recursively.

The algorithm just sketched leads immediately to a bound of the form (1). A detailed proof is given
in Section 4. We emphasise that the new method works directly over C, and does not need special
coefficient rings with ‘‘fast’’ roots of unity, of the type constructed by Fürer. Optimising parameters
and keeping careful track of constants leads to Theorem 1, which is proved in Section 6.We also prove
the following conditional result in Section 9, where we recall that a Mersenne prime is a prime of the
form p = 2q

− 1.

Theorem 2. Let πm(x) denote the number of Mersenne primes less than x. If the function x →

πm(x)/ log log x is bounded both from above and from below on (3, ∞), then

I(n) = O(n log n 4log∗ n).

The assumption on πm(x) is a weakening of the Lenstra–Pomerance–Wagstaff conjecture on the
distribution of Mersenne primes. The idea of the algorithm is to replace the coefficient ring C by the
finite field Fp[i]; we are then able to exploit fast algorithms for multiplication modulo numbers of the
form 2q

− 1.
An important feature of the new algorithms is that the same techniques are applicable in other

contexts, such as polynomial multiplication over finite fields. Previously, no Fürer-type complexity
bounds were known for the latter problem. The details are presented in the companion paper [23].

In the remainder of this section, we present a brief history of complexity bounds for integer
multiplication, and we give an overview of the paper and of our contribution. More historical details
can be found in books such as [54, Chapter 8].

1.1. Brief history and related work

Multiplication algorithms of complexity O(n2) in the number of digits n were already known in
ancient civilisations. The Egyptians used an algorithm based on repeated doublings and additions.
The Babylonians invented the positional numbering system, while performing their computations



Download English Version:

https://daneshyari.com/en/article/4608520

Download Persian Version:

https://daneshyari.com/article/4608520

Daneshyari.com

https://daneshyari.com/en/article/4608520
https://daneshyari.com/article/4608520
https://daneshyari.com

