Journal of Complexity 34 (2016) 78-128

Contents lists available at ScienceDirect

Journ,

cO

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

A softly optimal Monte Carlo algorithm for @ CrossMatk
solving bivariate polynomial systems over
the integers

Esmaeil Mehrabi, Eric Schost *

Computer Science Department, Western University, London, ON, Canada

ARTICLE INFO ABSTRACT

Article history: We give an algorithm for the symbolic solution of polynomial
Received 27 February 2015 systems in Z[X, Y]. Following previous work with Lebreton, we
Accepted 21 September 2015 use a combination of lifting and modular composition techniques,

Available online 28 November 2015 relying in particular on Kedlaya and Umans’ recent quasi-linear

time modular composition algorithm.

Key w_ords: The main contribution in this paper is an adaptation of a defla-
Bivariate system

Complexity tion algorithm of Lecerf, that allows us to treat singular solutions
Algorithm for essentially the same cost as the regular ones. Altogether, for an

input system with degree d and coefficients of bit-size h, we obtain
Monte Carlo algorithms that achieve probability of success at least
1—1/2”, with running time d**¢0°(d? + dh + d + $2) bit oper-
ations, for any ¢ > 0, where the O notation indicates that we omit
polylogarithmic factors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Overview. Newton iteration is one of the most popular components of polynomial system solvers,
from either the numeric or symbolic points of view. The usual version of this procedure handles
situations without multiplicities only, since it requires that the Jacobian matrix of the given system be
invertible at the roots we are looking for. To handle singular roots, various forms of deflation techniques
have been developed (we will review some of them below).

* Corresponding author.
E-mail addresses: emehrab@uwo.ca (E. Mehrabi), eschost@uwo.ca (E. Schost).

http://dx.doi.org/10.1016/j.jc0.2015.11.009
0885-064X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jco.2015.11.009
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2015.11.009&domain=pdf
mailto:emehrab@uwo.ca
mailto:eschost@uwo.ca
http://dx.doi.org/10.1016/j.jco.2015.11.009

E. Mehrabi, E. Schost / Journal of Complexity 34 (2016) 78-128 79

In this paper, we are interested in applying such techniques to the symbolic solution of bivariate
polynomial systems F = G = 0, with F and G in Z[X, Y]. This is in the continuation of previous
work with Lebreton [29], where Newton iteration techniques were used to handle solutions without
multiplicities of the system F = G = 0. In this work, using results and ideas from [29], as well as
Lecerf’s deflation algorithm [31], we extend this approach to all solutions.

Motivated by applications to computational topology or computer graphics, recent years have
witnessed the publication of a large body of work on bivariate systems. While some algorithms
rely mostly on numerical techniques such as subdivision [3], many recent results involve symbolic
elimination techniques, possibly in combination with real or complex root isolation [5,7-9,17-19,23,
25,47]; we will discuss some these results further below.

Our interest here is on complexity of the symbolic side of such algorithms. In a nutshell, our main
result says that bivariate systems with integer coefficients can be solved “symbolically” in essentially
optimal time by Monte Carlo algorithms.

Over an arbitrary field. Let us first discuss known results for solving a bivariate system F = G = 0
over K[X, Y], where K is an arbitrary perfect field. Suppose that the zero-set V(F, G) of F and G in
an algebraic closure K of K is finite. In this case, if F and G have total degree at most d, the Bézout
theorem implies that the system F = G = 0 has at most d? solutions.

Several approaches exist to describe the solutions of our system: Grobner bases, triangular repre-
sentations, or descriptions based on univariate polynomials. For instance, in [29], together with Le-
breton, we relied on a canonical description of a zero-dimensional variety, called the equiprojectable
decomposition [14], using triangular sets; this is close to the decomposition based on subresultant
calculations used in [23], but as a geometric notion, it does not take into account multiplicities in the
input system.

Although it would be natural to use this kind of description here as well, the techniques we rely
on are slightly easier to apply when working in generic coordinates. Indeed, if we are in generic
coordinates, the zeros of F = G = 0 can simply be described by a pair of polynomials in K[X], of
the form

P(X) =0, Y =5X); (1)

the polynomials (P, S) will be called a lexicographic basis of F, G, since (P, Y — S) is indeed a Grébner
basis of the radical of (F, G), for the lexicographic order Y > X. Remark that for such a description to
make sense, no two points on V (F, G) should have the same abscissa; this is precisely what is ensured
once we are in generic coordinates. In such an output, our choice is to take P squarefree; in other
words, our representation of the solutions does not reflect multiplicities (as a matter of fact, if K were
not perfect, P could still have multiple roots in K while being squarefree in K[X]).

The input polynomials F and G have degree d in two variables; the polynomials P and S have degree
at most d? in one variable. Thus, representing both input and output involves only 0(d?) elements in
K. One would then naturally hope that P and S could be computed within 0°(d?) operations in K,
where the 07() notation omits polylogarithmic factors (see [51, Definition 25.8]).

However, no such result is known; the very close problem of computing the resultant of F and G
using 07(d?) operations is given as a research problem in [51, Problem 11.11]. For the latter resultant
problem, the best algorithm known so far [45] uses 0"(d>) operations in K.

Systems over the integers. In this paper, we are going to work in the particular case where K = Q.
In such cases, it becomes crucial to take into account the bit-size of the input and output as well;
cost estimates will then be given in a boolean model (explicitly, a RAM with logarithmic cost, see
[2, Section 1.2]).

For a nonzero integer a, we write len(a) = [log(]a|)], and we call this the length of a; for a = 0,
we write len(0) = 1. This quantity essentially represents the amount of bits needed to store a (one
may also work with the height of a, written ht(a) = log(|al), but the fact that len(a) takes integer
values will be useful to us). It will be convenient to introduce a notion of length for polynomials with
coefficients in Q as well: if P is such a polynomial, the length len(P) denotes the maximum of the
lengths len(d) and len(n;);c;, where d is a minimal common denominator for all coefficients of P and

Download English Version:

https://daneshyari.com/en/article/4608539

Download Persian Version:

https://daneshyari.com/article/4608539

Daneshyari.com

https://daneshyari.com/en/article/4608539
https://daneshyari.com/article/4608539
https://daneshyari.com

