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a b s t r a c t

Improved cost estimates are given for the problem of computing
the inverse of an n × n matrix of univariate polynomials over a
field. A deterministic algorithm is demonstrated that has worst
case complexity (n3s)1+o(1) field operations, where s ≥ 1 is an up-
per bound for the average column degree of the inputmatrix. Here,
the ‘‘+o(1)’’ in the exponent indicates a missing factor c1(log ns)c2
for positive real constants c1 and c2. As an application we show
how to compute the largest invariant factor of the input matrix in
(nωs)1+o(1) field operations,whereω is the exponent ofmatrixmul-
tiplication.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of computing the inverse of amatrix of polynomials over an abstract field
K. Let F ∈ K [x]n×n be an n × n matrix over the ring of univariate polynomials K[x], and let d ≥ 1
be a bound on the degrees of entries of F. Recall that the determinant det F can have degree up to nd
and that the adjugate (or classical adjoint) det F · F−1 is a polynomial matrix with entries of degree up
to nd. Thus, F−1 can require on the order of n3d field elements to represent: a factor of n more than
required to write down F.

In a surprising result, Jeannerod and Villard [4] give an algorithm to compute F−1 for a generic
input matrix of dimension a power of 2 that has a cost of (n3d)1+o(1) field operations from K. Here,
and in the remainder of the paper, the ‘‘+o(1)’’ in the exponent of cost estimates indicates a missing
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factor c1(log nd)c2 for positive real constants c1 and c2. The inversion algorithm of Jeannerod and Vil-
lard [4] works for arbitrary input matrices. However, the (n3d)1+o(1) running time bound is obtained
only for inputs that have dimension a power of 2, and which satisfy the genericity requirement that
the n2(d+ 1) coefficients of F do not cause a particular polynomial of degree n2(d+ 1) to vanish. The
genericity requirement ensures that all matrices arising during the construction have uniform row
and column degrees. Jeannerod and Villard’s recipe is the first essentially optimal inversion algorithm
for polynomial matrices, at least for generic matrices with dimension a power of 2, improving on the
previously known algorithms which have cost (nω+1d)1+o(1), where ω is the exponent of matrix mul-
tiplication. More recently, an alternative inversion algorithm is given by Storjohann [9]: the algorithm
is Las Vegas randomized and has expected cost (n3d)1+o(1) field operations for all input matrices. For
a survey of previous work on polynomial matrix inversion we refer to [4,9].

In this paper we give a simple extension of the algorithm of Jeannerod and Villard [4] which works
for arbitrary input matrices while maintaining a worst case deterministic (n3d)1+o(1) bound on the
running time in all cases. We illustrate the differences between the algorithm of [4] and our extension
using a pair of simple examples.

To understand the behaviour of the inversion algorithm [4] for generic inputs it will suffice to con-
sider a 4×4 inputmatrix of degree 3. In our exampleswe only show the degree profile of thematrices,
that is, the degrees of the polynomials inside the matrix and not the polynomials themselves. Blocks
of the matrix that are necessarily zero are left blank. The algorithm begins by computing a matrix A1
such that

degs F 3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3


degs A1 3 3 3 3

3 3 3 3
3 3 3 3
3 3 3 3

=

 6 6
6 6

6 6
6 6

 .

The first 2 columns of A1 comprise a kernel basis for the last 2 rows of Fwhile the last 2 columns of A1
comprise a kernel basis for the first 2 rows of F. The algorithm now proceeds recursively on the two
2×2 diagonal blocks of F ·A1, continuing until the matrix is diagonalized. For this example two levels
of recursion suffices to obtain a diagonalization B of the input matrix.

F

degs A1 3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3


degs A2 6 6

6 6
6 6
6 6

=

degs B 12
12

12
12

 . (1)

By multiplying (1) on the left by F−1 and on the right by B−1 a structured decomposition is ob-
tained for F−1. The genericity condition required for the cost analysis in [4] ensures that the property
‘‘dimension × degree = nd’’ holds for all the recursive subproblems. In general, for a generic input
matrix F of degree d, and dimension n a power of 2, the decomposition has the form

F−1
= A1A2 · · ·Alog n · B−1, (2)

with B = (det F) · In and Ai+1 block diagonal with blocks of dimension n/2i and degree 2id, 0 ≤ i ≤

log n − 1. Thus, if T (n, d) denotes the running time of the method to compute the structured decom-
position on the right hand side of (2), then

T (n, d) ≤ 2 T (n/2, 2d) + (nωd)1+o(1), (3)

and it follows that T (n, d) ∈ (nωd)1+o(1). Note that each of the output matrices A1, . . . ,Alog n, B in the
inverse decomposition requires at most n2(d + 1) field elements to represent, so the total size of the
output is O(n2d log n) field elements. In [4] it is also shown that multiplying together the decomposi-
tion to obtain F−1 explicitly can be done in time (n3d)1+o(1).

For a non-generic input matrix the degrees of columns in the kernel basis in the Ai matrices need
not be uniform. Even a so-called minimal kernel basis, for which the sum of the column degrees is
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