
Journal of Complexity 31 (2015) 206–236

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

On the complexity of computing with planar
algebraic curves
Alexander Kobel a,b,c, Michael Sagraloff a,∗
a Max-Planck-Institut für Informatik, Saarbrücken, Germany
b International Max Planck Research School for Computer Science, Saarbrücken, Germany
c Universität des Saarlandes, Saarbrücken, Germany

a r t i c l e i n f o

Article history:
Received 24 February 2014
Accepted 30 July 2014
Available online 12 August 2014

Keywords:
Bivariate systems
Separating form
Topology analysis
Arrangement computation
Complexity analysis
Approximate multipoint evaluation

a b s t r a c t

In this paper,we give improved bounds for the computational com-
plexity of computing with planar algebraic curves. More specif-
ically, for arbitrary coprime polynomials f , g ∈ Z[x, y] and an
arbitrary polynomial h ∈ Z[x, y], each of total degree less than
n and with integer coefficients of absolute value less than 2τ ,
we show that each of the following problems can be solved in a
deterministic way with a number of bit operations bounded by
Õ(n6

+ n5τ), where we ignore polylogarithmic factors in n and τ :

• The computation of isolating regions inC2 for all complex solutions
of the system f = g = 0,

• the computation of a separating form for the solutions of
f = g = 0,

• the computation of the sign of h at all real valued solutions of
f = g = 0, and

• the computation of the topology of the planar algebraic curve C
defined as the real valued vanishing set of the polynomial f .

Our bound improves upon the best currently known bounds for the
first three problems by a factor of n2 or more and closes the gap to
the state-of-the-art randomized complexity for the last problem.
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1. Introduction

In this paper,we derive record bounds for the computational complexity of the following problems,
which are related to the arrangement computation of planar algebraic curves:

(P1) Given two coprime polynomials f , g ∈ Z[x, y] of degree n or less, compute isolating regions in
C2 for all distinct complex solutions (xi, yi) ∈ C2 of the system

f (x, y) = g(x, y) = 0, (1)

with i = 1, . . . , r and some integer r with r ≤ deg f · deg g ≤ n2, which is the upper bound of
the number of solutions of the zero-dimensional system due to Bézout’s Theorem.

(P2) Compute a separating form x+ s · y, with s ∈ {0, 1, . . . , n4
}, for (1) such that xi + s · yi ≠ xj + s · yj

for all i, j with i ≠ j.
(P3) Given an arbitrary polynomial h ∈ Z[x, y], evaluate the sign of h at all real valued solutions (xi, yi)

of (1).
(P4) Given an arbitrary polynomial f ∈ Z[x, y], compute the topology of the real planar algebraic

curve

C := {(x, y) ∈ R2
: f (x, y) = 0} (2)

in terms of a planar straight line graph that is isotopic1 to C.

We remark that a solution to the above problems allows us to answer all necessary queries for
arrangement computations with planar algebraic curves [8,6,21,25,30]. Namely, for a set of planar
algebraic curves, we can compute the topology of each of these curves from (P4), we can compute the
intersection points of two curves from (P1), and, from (P3), we can decide whether two intersection
points from two distinct pairs of curves are equal or not.

Themain contribution of this paper is a deterministic algorithm that solves all of the aboveproblems
(P1)–(P4) in a number of bit operations bounded by Õ(n6

+ n5τ), where n is an upper bound for
the total degree of the polynomials f , g and h, and τ is an upper bound for the bitsize of their
coefficients. For the first two problems, we also give more general bounds that take into account the
case of unbalanced input. That is, if f and g are polynomials of total degree m and n and with integer
coefficients of bitsize bounded by τf and τg , respectively, then (P1) and (P2) can be solved in time
Õ

max2{m, n} · (m2n2

+ mn(mτg + nτf ))

.

Webriefly outline our approach: For (P1),we first extend (andmodify) an algorithm fromBerberich
et al. [6,7], denoted BiSolve, that isolates only the real valued solutions of (1). The so-obtained
algorithm CBiSolve computes isolating polydisks in C2 for all complex solutions and further refines
these disks to an arbitrarily small size if necessary. From a high-level perspective, the algorithm
decomposes into two steps: In the first step, the projection step, we project all solutions onto their
x- and y-coordinates using resultant computation and univariate root finding. This induces a grid
consisting of O(n4) candidates that have to be checked for solutions in the second step, the validation
step: For processing the candidates, we combine approximate evaluation of the input polynomials
at the candidates and adaptive evaluation bounds derived from the co-factor representations of the
resultant polynomials; see Section 2.3 for details. We further remark that CBiSolve does not need any
coordinate transformation and returns isolating polydisks in the initial coordinate system.

From the solutions of the system (1), we derive a corresponding separating form x + s · y for (1)
by approximating all ‘‘bad’’ values for s (to an error of 1/2), for which a pair of distinct solutions is
mapped to the same value via x+ s · y. Since there are at most r , with r ≤ n2, many distinct solutions,
there exist at most

 r
2


< n4 bad values for s. Hence, we can determine a separating form with an

s ∈ {0, 1, . . . , n4
}. This solves Problem (P2).

1 We consider the stronger notion of an ambient isotopy, but omit the word ‘‘ambient’’. A graph GC , embedded in R2 , is
ambient isotopic to C if there exists a continuous mapping φ : [0, 1] × R2

→ R2 with φ(0, ·) = idR2 , φ(1, C) = GC , and
φ(t0, ·) : R2

→ R2 is a homeomorphism for each t0 ∈ [0, 1].
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