

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Complexity of oscillatory integration for univariate Sobolev spaces

Erich Novak^a, Mario Ullrich^{a,*}, Henryk Woźniakowski^{b,c}

^a Mathematisches Institut, Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany

^b Department of Computer Science, Columbia University, New York, NY 10027, USA

^c Institute of Applied Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland

ARTICLE INFO

Article history: Received 27 November 2013 Accepted 8 July 2014 Available online 16 July 2014

Keywords: Oscillatory integration Complexity Sobolev space

ABSTRACT

We analyze univariate oscillatory integrals for the standard Sobolev spaces H^s of periodic and non-periodic functions with an arbitrary integer $s \ge 1$. We find matching lower and upper bounds on the minimal worst case error of algorithms that use n function or derivative values. We also find sharp bounds on the information complexity which is the minimal n for which the absolute or normalized error is at most ε . We show surprising relations between the information complexity and the oscillatory weight. We also briefly consider the case of $s = \infty$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study the approximate computation of univariate oscillatory integrals (Fourier coefficients)

$$I_k(f) = \int_0^1 f(x) \,\mathrm{e}^{-2\pi \,i\,kx} \,\mathrm{d}x, \quad i = \sqrt{-1},\tag{1}$$

where $k \in \mathbb{Z}$ and $f \in H^s$. We improve the known upper bounds and also prove matching lower bounds, i.e., we study the complexity of this computational problem. By H^s we mean the standard Sobolev (Hilbert) space; we study spaces of periodic and non-periodic functions defined on [0, 1] with an arbitrary integer $s \ge 1$. We usually consider a finite *s* but we also briefly consider the case

* Corresponding author.

http://dx.doi.org/10.1016/j.jco.2014.07.001

E-mail addresses: erich.novak@uni-jena.de (E. Novak), ullrich.mario@gmail.com, mario.ullrich@uni-jena.de (M. Ullrich), henryk@cs.columbia.edu (H. Woźniakowski).

⁰⁸⁸⁵⁻⁰⁶⁴X/© 2014 Elsevier Inc. All rights reserved.

of $s = \infty$. Although we consider arbitrary integers *k*, our emphasis is for large |k| and we explain our results here only for such *k*.

We compute the initial error (the norm of I_k) as well as the worst case error of our algorithms exactly. This is possible since we assume that k is an integer. For the periodic case the initial error is of order $|k|^{-s}$, whereas for the non-periodic case it is independent of s and is roughly $|k|^{-1}$. This means that the initial error for the periodic case is much smaller for large s. For $s = \infty$, the periodic case leads to the space of only constant functions and the problem becomes trivial since the initial error is zero for all $k \neq 0$. The non-periodic case is still reasonable with the initial error roughly $|k|^{-1}$.

For a finite *s* and the periodic case, we prove that an algorithm that uses *n* function values at equally spaced points is nearly optimal, and its worst case error is bounded by $C_s(n + |k|)^{-s}$ with an exponentially small C_s in *s*. For the non-periodic case, we first compute successive derivatives up to order s - 1 at the end-points x = 0 and x = 1. These derivatives values are used to periodize the function and this allows us to obtain similar error bounds like for the periodic case. Asymptotically in *n*, the worst case error of the algorithm is of order n^{-s} independent of *k* for both periodic and non-periodic cases.

Near optimality of this algorithm is shown by proving a lower bound of order $(n + |k|)^{-s}$ which holds for all algorithms that use the values of function and derivatives up to order s - 1 at n arbitrarily chosen points from [0, 1]. We establish the lower bound by constructing a periodic function that vanishes with all its derivatives up to order s - 1 at the points sampled by a given algorithm, belongs to the unit ball of the space H^s , and its oscillatory integral is of order $(n + |k|)^{-s}$.

For $s = \infty$, we provide two algorithms which compute successive derivatives and/or function values at equally spaced points. The worst case error of one of these algorithms is super exponentially small in *n*. For $s = \infty$, we do not have a matching lower bound.

We consider the absolute and normalized error criteria. For the absolute error criterion, we want to find the information complexity which is defined as the smallest *n* for which the *n*th minimal error is at most $\varepsilon \in (0, 1)$, whereas for the normalized error criterion, the information complexity is the smallest *n* for which the *n*th minimal error reduces the initial error by a factor ε . For a finite *s* we obtain the following results.

- For the absolute error criterion and the periodic case, the information complexity is zero if $\varepsilon > 1/(2\pi |k|)^s$ and otherwise is roughly $\varepsilon^{-1/s} |k|$. This means that in this case the problem becomes easier for large |k|.
- For the normalized error criterion and for the periodic case, the information complexity is of order $|k| \varepsilon^{-1/s}$. Hence, in this case the problem becomes harder for larger |k|.
- For the absolute error criterion and the non-periodic case, the information complexity is zero if $\varepsilon \ge 1.026/(2\pi |k|)$ and otherwise is roughly lower bounded by $\varepsilon^{-1/s} |k|$ and upper bounded by $\varepsilon^{-1/s} + 2s 1 |k|$. As for the periodic case, the problem becomes easier for large *k*.
- For the normalized error criterion and the non-periodic case, the information complexity is of order $|k|^{1/s} \varepsilon^{-1/s}$ for very small ε . In this case, the dependence on |k| is more lenient than for the periodic case especially if *s* is large.

The dependence on |k| is quite intriguing if |k| goes to infinity. For s = 1 and fixed ε , the information complexity goes to infinity linearly with |k|. However, the situation is quite different for $s \ge 2$. Then for large |k| the information complexity is bounded by 2s if ε is fixed or if ε tends to zero like $|k|^{-\eta}$ with $\eta \in (0, s - 1)$.

For $s = \infty$, we obtain only upper bounds on the information complexity. For ε tending to zero they are roughly $\ln(\varepsilon^{-1}) / \ln(\ln(\varepsilon^{-1}))$ independent of |k|.

There are several recent papers about the approximate computation of highly oscillatory univariate integrals with the weight $\exp(2\pi i kx)$, where $x \in [0, 1]$ and k is an integer (or $k \in \mathbb{R}$) which is assumed to be large in the absolute sense, see Domínguez, Graham and Smyshlyaev [4], Iserles and Nørsett [6], Melenk [8], Chapter 3 of Olver [11], and Huybrechs and Olver [5] for a survey. Some authors mainly present asymptotic error bounds as k goes to infinity for algorithms that use n function or derivative values. It is usually done for C^{∞} or even analytic functions. There are not too many papers that contain explicit error bounds depending on k and n. Examples include [4,8,11]. All these papers also contain pointers to the further relevant literature.

Download English Version:

https://daneshyari.com/en/article/4608593

Download Persian Version:

https://daneshyari.com/article/4608593

Daneshyari.com