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a b s t r a c t

For most functionals for which pathwise stochastic integration
with respect to Brownian motion is defined, sample Brownian
paths for which the integral exists are very hard to construct.
There exist on the unit interval, functions ω that can be uniformly
approximated by sequences of continuous piece-linear functions
(ωn) such that each ωn is encoded by a finite binary string of
high Kolmogorov–Chaitin complexity. Such functions ω are called
complex oscillations. Their set has Wiener measure 1 and they are
fully characterised by infinite binary strings of high complexity. In
this paper we study stochastic integration from the point of view
of complex oscillations. We prove that, under some computability
properties on integrands, pathwise stochastic integrals exist for
any complex oscillation. We prove also that Itô’s lemma holds for
each complex oscillation. Thus constructing a continuous function
satisfying Itô’s lemma is reduced to constructing an infinite binary
string of high Kolmogorov–Chaitin complexity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Brownian motion on the unit interval is a real-valued function (t, ω) → X(t, ω) on [0, 1] ×Ω ,
where Ω is the underlying space of some probability space, such that X(0, ω) = 0, the function
t → X(t, ω) is continuous for any ω, and for any finite sequence 0 < t1 < · · · < tn in the unit
interval, the random variables ω → X(t1, ω), X(t2, ω) − X(t1, ω), . . . , X(tn, ω) − X(tn−1, ω) are
statistically independent andnormally distributedwithmeans 0 and variances t1, t2−t1, . . . , tn−tn−1,
respectively. The canonical Brownian motion X , that will be assumed throughout, is obtained by
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taking Ω = C[0, 1], the set of continuous real functions defined on [0, 1] and vanishing at the
origin, with its uniform norm topology and endowed with the Wiener measure P , and X is defined
by X(t, ω) = ω(t). The random variable ω → X(t, ω) will be denoted X(t). We recall that P is the
unique Borel probability measure on C[0, 1] such that for any 0 < t1 < · · · < tn ≤ 1 and any Borel
subset A of Rn,

P [ω ∈ C[0, 1] : (ω(t1), . . . , ω(tn)) ∈ A] =

A

e−
1
2 x

TQ−1x

(2π)n/2(detQ )1/2
dx

where Q = (qij) is the n × n matrix defined by qij = ti, for i ≤ j. (More discussions can be found
in [13].)

As it is well known, most probability theory results are almost surely properties in the sense that
they hold outside exceptional sets of null probability. Generally, it is difficult to say more than that
the probability of an event is 1. Very little is known about these exceptional null sets and it seems that
probability theory gives them less interest. On the other hand, one can ask if probability theory (or
measure theory in general) is well equipped to analyse such specific objects. Typical Brownianmotion
properties (or stochastic processes in general) are surprisingly unexpected, counter-intuitive and in
general with non-constructive proofs. A natural question that arises when studying a typical property
of Brownianmotion is to know how difficult is it to construct a ‘‘sample path’’ satisfying that property.

Generally, sets of Wiener measure 1 are defined by a given particular property of Brownian
motion. Asarin and Prokovskii [1] were the first to define a subset of C[0, 1] of full Wiener measure
independently of any specific Brownian motion property by using the notion of Kolmogorov–Chaitin
complexity. They considered the set of functions on [0, 1] that can be uniformly approximated by
sequences of piece-linear functions encoded by finite binary strings of high Kolmogorov–Chaitin
complexity (precise definitions are given in Section 2). Such functions are now referred to as
algorithmically random Brownian motions or complex oscillations. Fouché [7] has completely
characterised complex oscillations: any complex oscillation is uniquely and recursively determined
by an infinite binary string α such that for a fixed constant d, the Kolmogorov–Chaitin complexity of
the substring ᾱ(n) of the first n bits of α is at least n−d for all n. (The set of such infinite binary strings
will be denoted KC .)

The major contribution of Asarin and Prokovskii is that they provided a playground where
questions related to complexity of stochastic processes can be analysed. The concept of
Kolmogorov–Chaitin complexity has already played a major role in defining randomness properties
in the classical Cantor space of binary strings. The interplay between algorithmic randomness and
probability theory is very useful in obtaining effective probability properties. (See for example
Davie [5] and Hoyrup and Rojas [12].)

Fouché [8] was the first to observe that the set (of complex oscillations) introduced by Asarin and
Prokovskii can be used to obtain effective Brownian motion laws in the same way complex binary
strings are used to obtain effective probability laws in the classical Cantor set {0, 1}N. He proposed to
study Brownian motion properties from the point of view of complex oscillations. Fouché [7] proved
that every complex oscillation satisfies the well-known modulus continuity property of Brownian
motion.

In this paper we continue the study of effective Brownian motion properties by considering the
key notion of stochastic integration. Stochastic calculus (or Itô calculus) is an important technique of
probability theory with many applications in financial mathematics, telecommunications, etc.

Given a functional f : [0, 1] × C[0, 1] → R depending on t ∈ [0, 1] and Brownian motion paths
ω ∈ C[0, 1], we shall consider the sums

Sn(f , t, ω) =

l
k=1

f ((k− 1)2−n, ω)(ω(k2−n)− ω((k− 1)2−n))+ f (l2−n, ω)(ω(t)− ω(l2−n))

where l = [2nt], the largest integer ≤2nt . If the limit limn→∞ Sn(f , t, ω) exists for t ∈ [0, 1], we will
say that the limit is the (pathwise) stochastic integral of f with respect to the path ω ∈ C[0, 1] on
[0, t], denoted

 t
0 f (s, ω)dω(s). If the limit exists almost surely for all ω and simultaneously for all

t ∈ [0, 1], then it defines a version of stochastic integral on [0, 1]. The stochastic integral of a given
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