where X and Y are Banach spaces such that Y is continuously embedded into X, from which the upper bounds for parametric integration in the C^{r}-case were derived.

In the present paper we further explore the range given in (1) by considering classes of functions with dominating mixed derivatives and other types of non-isotropic smoothness. In contrast to the C^{r} case, these classes allow to treat different smoothnesses for the parameter dependence and for the basic (nonparametric) integration problem. We want to understand the typical behavior of the complexity in these classes and the relation between the deterministic and randomized setting, this way clarifying in which cases and to which extend randomized methods are superior to deterministic ones.

The paper is organized as follows. In Section 3 we recall the needed algorithms and results for Banach space valued definite and indefinite integration from [2]. In Section 4 we consider parametric definite and indefinite integration and obtain the main results. Applications to various smoothness classes are given in Section 5, together with some comments on the relation between the deterministic and the randomized setting.

2. Preliminaries

We denote $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. Given Banach spaces X, Y, we let $\mathscr{L}(X, Y)$ be the space of bounded linear operators from X to Y, equipped with the usual norm, and we write $\mathscr{L}(X)$ if $X=Y$. The dual space of X is denoted by X^{*}, the identity mapping on X by I_{X}, and the closed unit ball by B_{X}. The norm of X is denoted by $\|\cdot\|$, other norms are distinguished by subscripts. We assume all considered Banach spaces to be defined over the same scalar field $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

We often use the same symbol for possibly different constants. Given two sequences of nonnegative reals $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$, the notation $a_{n} \preceq b_{n}$ means that there are constants $c>0$ and $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, a_{n} \leq c b_{n}$. Moreover, we write $a_{n} \asymp b_{n}$ if $a_{n} \preceq b_{n}$ and $b_{n} \preceq a_{n}$. We also use the notation $a_{n} \asymp \log b_{n}$ if there are constants $c_{1}, c_{2}>0, n_{0} \in \mathbb{N}$, and $\theta_{1}, \theta_{2} \in \mathbb{R}$ with $\theta_{1} \leq \theta_{2}$ such that for all $n \geq n_{0}$

$$
c_{1} b_{n}(\log (n+1))^{\theta_{1}} \leq a_{n} \leq c_{2} b_{n}(\log (n+1))^{\theta_{2}} .
$$

Throughout the paper \log means $\log _{2}$.
For $1 \leq p \leq 2$ a Banach space X is said to be of (Rademacher) type p, if there is a constant $c \geq 0$ such that for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leq c^{p} \sum_{k=1}^{n}\left\|x_{i}\right\|^{p}, \tag{2}
\end{equation*}
$$

with $\left(\varepsilon_{i}\right)_{i=1}^{n}$ being independent random variables satisfying $\mathbb{P}\left\{\varepsilon_{i}=-1\right\}=\mathbb{P}\left\{\varepsilon_{i}=+1\right\}=1 / 2$. The type p constant $\tau_{p}(X)$ of X is the smallest constant $c \geq 0$ satisfying (2), and $\tau_{p}(X)=\infty$, if there is no such c. We refer to [11] for background on this notion. The space $L_{p_{1}}(\mathcal{M}, \mu)$, where (\mathcal{M}, μ) is an arbitrary measure space and $p_{1}<\infty$, is of type p with $p=\min \left(p_{1}, 2\right)$. Furthermore, there is a constant $c>0$ such that $\tau_{2}\left(\ell_{\infty}^{n}\right) \leq c(\log (n+1))^{1 / 2}$ for all $n \in \mathbb{N}$.

Let $Q=[0,1]^{d}$ and let $C^{r}(Q, X)$ denote the space of all r-times continuously differentiable functions $f: Q \rightarrow X$ equipped with the norm

$$
\|f\|_{c^{r}(Q, X)}=\max _{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq r, t \in Q}\left\|\frac{\partial^{|\alpha|} f(t)}{\partial t^{\alpha}}\right\| .
$$

For $r=0$ we write $C^{0}(Q, X)=C(Q, X)$, which is the space of continuous X-valued functions on Q, and if $X=\mathbb{K}$, we write $C^{r}(Q)$ and $C(Q)$.

Let $X \otimes Y$ be the algebraic tensor product of Banach spaces X and Y and let $X \otimes_{\lambda} Y$ be the injective tensor product, defined as the completion of $X \otimes Y$ with respect to the norm

$$
\lambda\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)=\sup _{u \in B_{X^{*}}, v \in B_{Y^{*}}}\left|\sum_{i=1}^{n}\left\langle x_{i}, u\right\rangle\left\langle y_{i}, v\right\rangle\right| .
$$

Background on tensor products can be found in [4,12]. For Banach spaces X_{1}, Y_{1} and operators $T \in$ $\mathscr{L}\left(X, X_{1}\right), U \in \mathscr{L}\left(Y, Y_{1}\right)$, the algebraic tensor product $T \otimes U: X \otimes Y \rightarrow X_{1} \otimes Y_{1}$ extends to a bounded

https://daneshyari.com/en/article/4608609

Download Persian Version:

https://daneshyari.com/article/4608609

Daneshyari.com

