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a b s t r a c t

We continue the complexity analysis of parametric definite and in-
definite integration given by Daun and Heinrich (2013). Here we
consider anisotropic classes of functions, including certain classes
with dominating mixed derivatives. Our analysis is based on a
multilevel Monte Carlo method developed by Daun and Heinrich
(2013) and we obtain the order of the deterministic and random-
ized n-th minimal errors (in some limit cases up to logarithms).
Furthermore, we compare the rates in the deterministic and ran-
domized setting to assess the gain reached by randomization.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The complexity of definite parametric integration was studied in [10,6,16], while in [2] the
complexity of both definite and indefinite parametric integration was considered. Parametric definite
integration is a problem intermediate between integration and approximation. Parametric indefinite
integration can be viewed as amodel for the solution of parametric initial value problems in the sense
that it is a partial, but typical case, and some of the methods developed here will be used in the study
of parametric initial value problems, see [3].

This paper is a continuation of [2] and we study both definite and indefinite integration. So far
definite parametric integration was considered only for isotropic classes and, in [6], for a specific
anisotropic class (Sobolev case with no smoothness in the integration variable). Indefinite parametric
integration was only studied for C r . In [2] we gave a general (multilevel) scheme for Banach space
valued integration of functions belonging to

C r(X) ∩ C r1(Y ), (1)
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where X and Y are Banach spaces such that Y is continuously embedded into X , fromwhich the upper
bounds for parametric integration in the C r -case were derived.

In the present paper we further explore the range given in (1) by considering classes of functions
with dominating mixed derivatives and other types of non-isotropic smoothness. In contrast to the
C r case, these classes allow to treat different smoothnesses for the parameter dependence and for the
basic (nonparametric) integration problem. We want to understand the typical behavior of the com-
plexity in these classes and the relation between the deterministic and randomized setting, this way
clarifying inwhich cases and towhich extend randomizedmethods are superior to deterministic ones.

The paper is organized as follows. In Section 3 we recall the needed algorithms and results for
Banach space valued definite and indefinite integration from [2]. In Section 4 we consider parametric
definite and indefinite integration and obtain the main results. Applications to various smoothness
classes are given in Section 5, togetherwith some comments on the relation between the deterministic
and the randomized setting.

2. Preliminaries

We denote N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Given Banach spaces X, Y , we let L (X, Y ) be
the space of bounded linear operators from X to Y , equipped with the usual norm, andwewrite L (X)
if X = Y . The dual space of X is denoted by X∗, the identity mapping on X by IX , and the closed unit
ball by BX . The norm of X is denoted by ∥ · ∥, other norms are distinguished by subscripts. We assume
all considered Banach spaces to be defined over the same scalar field K = R or K = C.

We often use the same symbol for possibly different constants. Given two sequences of
nonnegative reals (an)n∈N and (bn)n∈N, the notation an ≼ bn means that there are constants c > 0
and n0 ∈ N such that for all n ≥ n0, an ≤ cbn. Moreover, we write an ≍ bn if an ≼ bn and bn ≼ an. We
also use the notation an ≍log bn if there are constants c1, c2 > 0, n0 ∈ N, and θ1, θ2 ∈ R with θ1 ≤ θ2
such that for all n ≥ n0

c1bn(log(n + 1))θ1 ≤ an ≤ c2bn(log(n + 1))θ2 .
Throughout the paper log means log2.

For 1 ≤ p ≤ 2 a Banach space X is said to be of (Rademacher) type p, if there is a constant c ≥ 0
such that for all n ∈ N and x1, . . . , xn ∈ X

E

 n
i=1

εixi


p

≤ cp
n

k=1

∥xi∥p, (2)

with (εi)ni=1 being independent random variables satisfying P{εi = −1} = P{εi = +1} = 1/2. The
type p constant τp(X) of X is the smallest constant c ≥ 0 satisfying (2), and τp(X) = ∞, if there
is no such c . We refer to [11] for background on this notion. The space Lp1(M, µ), where (M, µ) is
an arbitrary measure space and p1 < ∞, is of type p with p = min(p1, 2). Furthermore, there is a
constant c > 0 such that τ2(ℓn∞) ≤ c(log(n + 1))1/2 for all n ∈ N.

Let Q = [0, 1]d and let C r(Q , X) denote the space of all r-times continuously differentiable
functions f : Q → X equipped with the norm

∥f ∥C r (Q ,X) = max
α∈Nd

0, |α|≤r, t∈Q

∂ |α|f (t)
∂tα

 .
For r = 0 we write C0(Q , X) = C(Q , X), which is the space of continuous X-valued functions on Q ,
and if X = K, we write C r(Q ) and C(Q ).

Let X ⊗ Y be the algebraic tensor product of Banach spaces X and Y and let X ⊗λ Y be the injective
tensor product, defined as the completion of X ⊗ Y with respect to the norm

λ


n

i=1

xi ⊗ yi


= sup

u∈BX∗ ,v∈BY∗

 n
i=1

⟨xi, u⟩ ⟨yi, v⟩

 .
Background on tensor products can be found in [4,12]. For Banach spaces X1, Y1 and operators T ∈

L (X, X1), U ∈ L (Y , Y1), the algebraic tensor product T ⊗U : X ⊗Y → X1 ⊗Y1 extends to a bounded
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