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a b s t r a c t

The reconstruction of solutions in statistical inverse problems in
Hilbert spaces requires regularization, which is often based on
a parametrized family of proposal estimators. The choice of an
appropriate parameter in this family is crucial. We propose a mod-
ification of the classical discrepancy principle as an adaptive pa-
rameter selection. This varying discrepancy principle evaluates
the misfit in some weighted norm, and it also has an incorpo-
rated emergency stop. These ingredients allow the order optimal
reconstruction when the solution owns nice spectral resolution.
Theoretical analysis is accompanied with numerical simulations,
which highlight the features of the proposed varying discrepancy
principle.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this study we are concerned with linear operator equations in Hilbert space, given as

yσ := TxĎ + σξ, (1)

where we assume that the operator T : X → Y is a compact injective operator. The element xĎ
denotes the (unknown) exact solution, and the parameter σ denotes the noise level of the noise ξ ,
specified below as Gaussian white noise. The problem just constitutes a nonparametric statistical
inverse problem. We mention the surveying article [4], and the recent [1] for an account on some
fundamental issues for such problems.
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The risk of any estimator x̂ = x̂(yσ ) will be measured in root mean square (RMS) sense, which is
given as

e(x̂, xĎ, σ ) := E

∥xĎ − x̂∥21/2.

We first motivate this study, and we start with discussing, why to use the discrepancy, which in
its plain form is given as yσ − ŷ, for any estimator x̂ of x and with ŷ = T x̂. The related residual
quantity∥yσ−ŷ∥ is fundamental in parametric statistics, and there is a reason tominimize the residual
by some appropriate estimator x̂ = x̂(yσ ). For inverse problems, i.e., when the operator T does not
have a bounded inverse, this is no longer feasible, and thiswould lead to over-fitting. However, the use
of themisfit yσ − ŷ for adaptive parameter selection in inverse problems is the basis of the discrepancy
principle (DP), which is doubtlessly the most used strategy for parameter selection in the context of
bounded deterministic noise, when we assume that the noise obeys ∥ξ∥Y ≤ 1. So, having just a given
set of data yσ at hand, one might resort to one of the fundamental monographs in inverse problems,
as e.g. [5], and they will find that the discrepancy principle is themethod of choice. However, a sound
theory which explains the use of the discrepancy in statistical inverse problems is still lacking. Also,
there are several iterative constructions of estimators x̂k, k = 1, 2 . . . , for which the discrepancy
principle is one of the few provably optimal parameter selection procedures, among them is conjugate
gradient iteration. In classical regularization theory this was shown in the seminal study [15]. This
iterative regularization schemewas actually themajormotivation to use the discrepancy in statistical
inverse problems in [1]. Therefore, in this study we shall outline, how to use the discrepancy as a
means for model selection in inverse problems.

For the setup in (1), the data yσ will not belong to Y almost surely. Based on the known behavior
of the singular value decomposition of the operator T we may find some power µ of the self-adjoint
companion H = TT ∗, such that Hµ(yσ − ŷ) ∈ Y almost surely. This will be the case exactly if
the operator Hµ is a Hilbert–Schmidt operator (has square summable singular values) by Sazonov’s
Theorem [18]. For simplicity we assume that this is the case for µ = 1/2, and in this case we may
use the smoothed misfit T ∗(yσ − ŷ) ∈ X . One may think of this as follows. We smoothen Eq. (1), and
the regularization will be based on the symmetrized equation with operator A := T ∗T , and smoothed
data zσ := T ∗yσ , by formally letting

zσ = T ∗yσ = AxĎ + σT ∗ξ .

The subsequent analysis will start from this symmetrized equation, and we will use zσ as given data.
As the analysis in [1] revealed, the plain use of this new misfit zσ − Ax̂ is possible, but it is not

appropriate. Instead, some additional weighting should be used, in order to take into account for the
statistical nature of thenoise. Specifically, the authors in [1] proposed amodified discrepancyprinciple
(MDP) by controlling the weighted discrepancy

∥ (λI + A)−1/2 (zσ − Ax̂)∥ (2)

for any proposal solution x̂, and for a fixed value λ, together with an emergency stop.
As in other studies we consider model selection from a parametric family x̂α, α ∈ ∆, where the

parameters (models) range in a grid

∆ :=

α0 > α1 := qα0 > · · · > αn := qnα0 > · · · > 0


, (3)

for a pre-specified value 0 < q < 1. In its generic form a discrepancy principle prescribes a
threshold τ = τ(σ ), and decreases α ∈ ∆ as long as ∥ (λI + A)−1/2 (zσ − Ax̂α)∥ > τ(σ). Under
white noise, and for a perfect fit zσ − Ax̂α = σζ we have that

E

∥σ (λI + A)−1/2 ζ∥2

= σ 2Tr

(λI + A)−1 A


= σ 2N (λ),

where we use the function N (λ) as the effective dimension. In order to have exponential bounds for
the deviation from this mean we introduce another auxiliary parameter κ to be specified later, and
we shall consider to check whether for a given α ∈ ∆we have

∥ (λI + A)−1/2 (zσ − Ax̂α)∥ ≤ τ(1 + κ)σ


N (λ).
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