Tractability of approximation of ∞-variate functions with bounded mixed partial derivatives

G.W. Wasilkowski
Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA

ARTICLE INFO

Article history:

Received 20 February 2013
Accepted 27 November 2013
Available online 30 January 2014

Keywords:

Function approximation
Tractability

Abstract

We study the tractability of ω-weighted L_{s} approximation for γ weighted Banach spaces of ∞-variate functions with mixed partial derivatives of order r bounded in a ψ-weighted L_{p} norm. Functions from such spaces have a natural decomposition $f=\sum_{\mathfrak{u}} f_{u}$, where the summation is with respect to finite subsets $\mathfrak{u} \subset \mathbb{N}_{+}$and each f_{u} depends only on variables listed in \mathfrak{u}. We derive corresponding multivariate decomposition methods and show that they lead to polynomial tractability under suitable assumptions concerning γ weights as well as the probability density functions ω and ψ. For instance, suppose that the cost of evaluating functions with d variables is at most exponential in d and the weights γ decay to zero sufficiently quickly. Then the cost of approximating such functions with the error at most ε is proportional to $\varepsilon^{-1 /(r+\min (1 / s-1 / p, 0))}$ ignoring logarithmic terms. This is a nearly-optimal result, since (once again ignoring logarithmic terms) it equals the complexity of the same approximation problem in the univariate case.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There are many practical problems dealing with ∞-variate functions. These involve stochastic differential equations, partial differential equations with random coefficients, and path integrals, see, e.g., $[3,4,13,14,24]$ and papers cited therein.

This is why the study of complexity and tractability of such problems has become a popular field of research. Indeed, in addition to relatively early papers [$11,21,29]$ on the complexity of such problems, the papers [1-6,9,12-14,17-20,24-27,31,32] have been written in the last three years.

[^0]With the exception of $[24-27,31,32]$ which study function approximation, the majority of the results are for approximating integrals. In the current paper, we focus on function approximation. As in the papers listed above, the space \mathcal{F} is such that any $f \in \mathcal{F}$ has the unique representation

$$
f(\boldsymbol{x})=\sum_{u} f_{u}(\boldsymbol{x}),
$$

where \mathfrak{u} enumerate the finite subsets of \mathbb{N}_{+}listing the so-called active variables upon which $f_{\mathfrak{u}}$ depends. More precisely, each f_{u} belongs to a normed space F_{u} that is a $|\mathfrak{u}|$-fold tensor product of a space F of univariate functions. Previous work on this topic assumed that F is a Hilbert space, with F_{u} being Hilbert spaces obtained via the usual tensor product. In this paper, we let F_{u} be Banach spaces of functions with mixed partial derivatives of order r bounded in a ψ-weighted L_{p} norm for some $p \in[1, \infty]$. The space \mathcal{F} is endowed with the norm

$$
\|f\|_{\mathcal{F}}=\left[\sum_{u}\left(\frac{\left\|f_{u}\right\|_{F_{u}}}{\gamma_{u}}\right)^{q}\right]^{1 / q}
$$

for $q \in[1, \infty]$ and a given family $\gamma=\left\{\gamma_{u}\right\}_{u}$ of non-negative numbers, called weights. The goal is to approximate $f \in \mathcal{F}$ with the error measured in a ω-weighted \mathscr{L}_{s}-norm for some $s \in[1, \infty]$. Both ψ and ω are probability density functions.

The role of weights γ_{u} has been explained in many papers; roughly speaking, they quantify the importance of interactions among variables listed in \mathfrak{u}. With the exception of [27], previous work has only considered the case $q=2$, resulting in \mathcal{F} also being a Hilbert space. In the current paper, we consider arbitrary q to study the tradeoff between the size of q and the rate of the decay of the weights γ. In particular, we show that with $q=1$, we have positive results even if γ_{u} converges to zero very slowly. On the other hand, we need quickly-converging γ_{u} for $q=\infty$. For more, see a short discussion at the end of the Introduction.

The role of ψ is to control the resulting space \mathcal{F}, since the faster the decay of ψ at $\pm \infty$ the larger the space \mathcal{F}. More precisely, the spaces F_{u} are completions of $|\mathfrak{u}|$-times (algebraic) tensor products of the following space F of univariate functions. The domain of functions f from F is an arbitrary interval $D \subseteq \mathbb{R}$ and $f^{(r-1)}$ are absolutely (locally) continuous with bounded

$$
\left[\int_{D}\left|f^{(r)}(x)\right|^{p} \psi(x) \mathrm{d} x\right]^{1 / p}<\infty
$$

We prove the positive results in a constructive way by outlining the so-called multivariate decomposition methods (or MDM for short). These are modifications of methods introduced in [14], changing dimension algorithms. Roughly speaking, these methods identify a set of important variable interactions (or SIVI for short) $\mathfrak{U}(\varepsilon)$ with the following desirable properties:
(i) the cardinality of $\mathfrak{U}(\varepsilon)$ is polynomial in $1 / \varepsilon$,
(ii) elements $f_{\mathfrak{u}}$ for $\mathfrak{u} \notin \mathfrak{U}(\varepsilon)$ can be neglected,
(iii) it is enough to approximate $f_{\mathfrak{u}}$ for $\mathfrak{u} \in \mathfrak{U}(\varepsilon)$,
(iv) the number $|\mathfrak{u}|$ of active variables is sub-logarithmic in $1 / \varepsilon$ for all $\mathfrak{u} \in \mathfrak{U}(\varepsilon)$.

In other words, an MDM replaces one problem with ∞-many variables by a number of problems, each with at most $O(\ln (1 / \varepsilon) / \ln (\ln (1 / \varepsilon)))$ variables, which is very small.

In general, the terms f_{u} in $f=\sum_{u} f_{u}$ are not available. Hence, to take advantage of (iii) and (iv), the space \mathcal{F} has to be such that values of f_{u} could be obtained by evaluating f at certain points. Moreover, we need efficient algorithms for multivariate problems with relatively small number $|\mathfrak{u}|$ of variables. When the F_{u} are Hilbert spaces, Smolyak's construction provides such algorithms, see [23] for the idea and [28] for specific results. Such algorithms are often called sparse grid algorithms.

For Smolyak's construction to be applicable, one needs

$$
\left\|\bigotimes_{j=1}^{d} \Delta_{j}\right\| \leq \prod_{j=1}^{d}\left\|\Delta_{j}\right\|
$$

https://daneshyari.com/en/article/4608622

Download Persian Version:
https://daneshyari.com/article/4608622

Daneshyari.com

[^0]: E-mail address: greg@cs.uky.edu.
 0885-064X/\$ - see front matter © 2014 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jco.2013.12.001

