

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

An explicit construction of point sets with large minimum Dick weight

Kosuke Suzuki

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914, Japan

ARTICLE INFO

Article history:
Received 8 May 2013
Accepted 2 November 2013
Available online 11 December 2013

Keywords: Quasi-Monte Carlo Higher order digital net Niederreiter-Xing sequence WAFOM Dick weight

ABSTRACT

The Dick weight is a generalization of the Hamming weight and the Niederreiter–Rosenbloom–Tsfasman (NRT) weight, defined on $\mathbb{F}_p^{s\times n}$. A point set with large value of minimum Dick weight gives a quadrature rule with small error in quasi-Monte Carlo integration. In this paper we explicitly construct point sets $P \subset \mathbb{F}_p^{s\times n}$ with large minimum Dick weight using Niederreiter–Xing sequences and Dick's interleaving construction. These point sets are also examples of low-WAFOM point sets.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let s,n be positive integers and p be a prime. Let $\mathbb{F}_2=\{0,1\}$ denote the two element field and \mathbb{F}_p denote the p-element field. Let $V:=\mathbb{F}_2^{s\times n}$ denote the set of $s\times n$ matrices with coefficients in \mathbb{F}_2 , which is an sn-dimensional \mathbb{F}_2 -vector space. For $A\in V$, we define the Dick weight as below.

Definition 1.1 ([4, Definition 3.3]). For $A = (a_{ii}) \in V$, we define a non-negative integer

$$\mu(A) := \sum_{\substack{1 \le i \le s \\ 1 \le i \le n}} j \times a_{i,j},$$

where each $a_{i,j} \in \{0, 1\}$ is considered as an integer, not as an element of \mathbb{F}_2 . We call $\mu(A)$ the Dick weight (more precisely Dick ∞ -weight) of A.

Remark 1.2. The original Dick weight is defined for $\mathbb{F}_2^{s \times \mathbb{N}}$: i.e. $n = \infty$ (see [1, Section 4.1] or [3, (15.2)]). This definition and Definition 3.2 are its truncated version up to n-digit precision.

Let P be a nonzero linear subspace of V. We define the minimum Dick weight of $P \subset V$ by

$$\delta_P := \min_{A \in P \setminus \{\mathbf{0}\}} \mu(A).$$

Matsumoto and Yoshiki proved the existence of a subspace $P \subset V$ with P^{\perp} having a large minimum Dick weight:

Proposition 1.3 ([5, Proposition 3]). Let s, n be arbitrary positive integers. Let $\alpha := (\log 2)/4$ and assume $m \geq 4$. Then there exists a subspace $P \subset V$ of dimension m with $\delta_{P^{\perp}} \geq \alpha^2 m^2/s$.

Here, we define $P^{\perp}:=\{A\in\mathbb{F}_2^{s\times n}|A\cdot B=0 \text{ for all }B\in P\}$, where the inner product on V is defined as usual: $A\cdot B=(a_{ij})\cdot (b_{ij}):=\sum_{1\leq i\leq s,\,1\leq j\leq n}a_{ij}b_{ij}.$ This shows that $\max\{\delta_{P^{\perp}}|P\subset\mathbb{F}_p^{s\times n},\,\dim P=m\}\geq \alpha^2m^2/s$. However, their proof of Proposition 1.3

uses a probabilistic argument and is therefore not constructive.

In this paper, using Niederreiter-Xing sequences and Dick's construction, we explicitly construct a linear subspace $P \subset V$ of dimension m which achieves $\delta_{P^{\perp}} \geq \lfloor m/11s \rfloor (m/2 + 8\sqrt{(s\lfloor m/11s \rfloor - 2)/3} +$ s/2+8) + 1 when $s | m/11s | \ge 2$ for each m. This is the same order as m^2/s . This implies that we can explicitly construct point sets with low WAFOM.

Remark 1.4. Yoshiki [9, Lemma 1] proved that for any linear subspaces $P \subset V$ with dim P = m, we have $\delta_{P^{\perp}} \leq (\frac{m}{2} + s)(\frac{m}{s} + 1)$. This inequality and the above results imply that $\max\{\delta_{P^{\perp}}|P \subset \mathbb{F}_2^{s \times n}, \dim P = m\}$ has the order m^2/s . He also proved that $\min\{\log(\mathsf{WAFOM}(P))|P \subset \mathbb{F}_2^{s \times n}, \dim P = m\}$ m} has the order m^2/s .

The rest of this paper is organized as follows. In Section 2, we briefly provide some background on quasi Monte-Carlo and WAFOM. In Section 3.1, we recall the definition of higher order digital nets and Dick's construction. In Section 3.2, we recall results on Niederreiter-Xing sequences. In Section 4, we show our main results using Dick's construction and Niederreiter-Xing sequences.

2. Background

We explain on quasi-Monte Carlo (OMC) and WAFOM briefly (see [3] about OMC and [4] about WAFOM for details).

Let s, n be positive integers. Let $\mathcal{P} \subset [0, 1)^s$ be a point set in an s-dimensional unit cube with finite cardinality $|\mathcal{P}| = N$, and let $f: [0, 1)^s \to \mathbb{R}$ be an integrable function. Quasi-Monte Carlo integration by \mathcal{P} is an approximation value

$$I_{\mathcal{P}}(f) := \frac{1}{N} \sum_{\mathbf{x} \in \mathcal{P}} f(\mathbf{x})$$

of the actual integration

$$I(f) := \int_{[0,1)^s} f(x) dx.$$

The QMC integration error is $Err(f; \mathcal{P}) := |I(f) - I_{\mathcal{P}}(f)|$.

We consider an n-digit discrete approximation. For a matrix $B := (b_{i,j}) \in V := \mathbb{F}_2^{s \times n}$ we associate an s-dimensional cube $\mathbf{I}_B := \prod_{i=1}^s I_{b_i} \subset [0,1)^s$, where each edge $I_{b_i} := [\sum_{j=1}^n b_{i,j} 2^{-j}, \sum_{j=1}^n b_{i,j} 2^{-j} + 2^{-n})$ is a half-open interval with length 2^{-n} . We define an *n*-digit discrete approximation f_n of f as

$$f_n: \mathbb{F}_2^{s \times n} \to \mathbb{R}, \qquad B := (b_{i,j}) \mapsto \frac{1}{\operatorname{Vol}(\mathbf{I}_B)} \int_{\mathbf{I}_B} f(x) dx.$$

Let P be a subset of V. We define the n-th discretized QMC integration of f by P as

$$I_{P,n}(f) := \frac{1}{|P|} \sum_{B \in P} f_n(B),$$

Download English Version:

https://daneshyari.com/en/article/4608623

Download Persian Version:

https://daneshyari.com/article/4608623

<u>Daneshyari.com</u>