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a b s t r a c t

The weighted star-discrepancy has been introduced by Sloan and
Woźniakowski to reflect the fact that in multidimensional inte-
gration problems some coordinates of a function may be more
important than others. It provides upper bounds for the error
of multidimensional numerical integration algorithms for func-
tions belonging to weighted function spaces of Sobolev type. In
the present paper, we prove several tractability results for the
weighted star-discrepancy. In particular, we obtain rather sharp
sufficient conditions under which the weighted star-discrepancy
is strongly tractable. The proofs are probabilistic, and use empiri-
cal process theory.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a set of points x1, . . . , xN from the d-dimensional unit cube [0, 1]d, for any z ∈ [0, 1]d the
discrepancy function ∆(z) is defined as

∆(z) =
1
N

N
n=1

1[0,z)(xn) − λ([0, z)),

and the star-discrepancy D∗

N(x1, . . . , xN) is defined as

D∗

N(x1, . . . , xN) = sup
z∈[0,1]d

|∆(z)| .

Here [0, z) is an axis-parallel box that stretches from the origin to z, andλ denotes the (d-dimensional)
Lebesguemeasure. The Koksma–Hlawka inequality states that for a function f on [0, 1]d the difference

E-mail address: aistleitner@math.tugraz.at.

0885-064X/$ – see front matter© 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jco.2013.12.004

http://dx.doi.org/10.1016/j.jco.2013.12.004
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2013.12.004&domain=pdf
mailto:aistleitner@math.tugraz.at
http://dx.doi.org/10.1016/j.jco.2013.12.004


382 C. Aistleitner / Journal of Complexity 30 (2014) 381–391

between the arithmetic mean of the function values f (x1), . . . , f (xN) and the integral of f over [0, 1]d
is bounded by the star-discrepancy of x1, . . . , xN , multiplied with the (Hardy–Krause) variation of
f over [0, 1]d. Consequently, point sets having small star-discrepancy can be used to approximate
a multidimensional integral. This method for numerical integration is an example of the so-called
quasi-Monte Carlo (QMC)method, which uses cleverly constructed deterministic point sets as sampling
points (as opposed to the Monte Carlo method, where randomly sampled points are used).

There exist several constructions of point sets achieving a discrepancy of order ≪ (logN)d−1N−1,
for fixed d and for N → ∞. However, these bounds are only useful if the number of points N is very
large (i.e., at least exponential) in comparison with d, which means that QMC integration using such
points is not feasible on a computer if d is large. To describe the problem concerning the existence
of low-discrepancy point sets of moderate cardinality for large values of d, the notion of the inverse
of the star-discrepancy can be used. Let n∗(d, ε) denote the smallest possible cardinality of a point set
in [0, 1]d having discrepancy at most ε. By a result of Heinrich et al. [11] for any d and N there exist
points x1, . . . , xN ∈ [0, 1]d such that

D∗

N(x1, . . . , xN) ≤ cabs

√
d

√
N

(1)

(where we can choose cabs = 10, see [1]), which implies that

n∗(d, ε) ≤ cabsdε−2

(cabs denotes positive absolute constants, not always the same). On the other hand, Hinrichs [14]
proved the lower bound

n∗(d, ε) ≥ cabsdε−1.

Thus there exist high-dimensional low-discrepancy point sets which have moderate cardinality in
comparison with the dimension d. Note, however, that constructing such point sets is a largely
unsolved problem (cf. [7,8]), and that calculating (or estimating) the discrepancy of a given high-
dimensional point set is generally a very difficult problem (see [9]).

A series of numerical investigations of Paskov and Traub in the mid-1990s showed that in practice
QMC integration can still be successfully applied to high-dimensional problems, and often perform
significantly better than what could be expected from theoretical upper bounds (see [22]). One
possible explanation is that often for a formally high-dimensional problem only a small number of
coordinates is really important, while other (or most) coordinates are much less important. This
idea led to the introduction of weighted function spaces and weighted discrepancies by Sloan and
Woźniakowski [23]. These concepts are closely connected with the theory of (weighted) reproducing
kernel Hilbert spaces of Sobolev type; in particular, the error of a QMC integration scheme for a
function f from such a weighted space can be estimated in terms of the norm of f in this space
and the corresponding weighted discrepancy of the set of sampling points, by means of a weighted
Koksma–Hlawka inequality. For details, see [23] as well as [3,6].

By the expressionweightswemean a set γ of non-negative real numbers γu, indexed by the class of
all non-empty subsets u of the set of coordinates {1, . . . , d} (or indexed by the class of all non-empty
subsets of N). An important special case is product weights, which satisfy

γu =


j∈u

γj,

where γj is the weight of {j}, that is, the weight associated with the jth coordinate.
Let |u| denote the cardinality of u. For a point x ∈ [0, 1]d and a non-empty subset u of {1, . . . , d},

we write x(u) for the |u|-dimensional point which consists only of those coordinates of x whose
index belongs to u. Furthermore, we write (x(u); 1) for the d-dimensional vector which has the same
coordinates as x, except that coordinates whose index is not in u are replaced by 1. Then theweighted
star-discrepancy of the points x1, . . . , xN ∈ [0, 1]d for weights γ = (γu)u⊂{1,...,d} is defined as

D∗

N,γ (x1, . . . , xN) = sup
z∈[0,1]d

max
u⊂{1,...,d}

γu|∆(z(u); 1)|.
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