

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Weighted discrepancy and numerical integration in function spaces

Journal of COMPLEXITY

Hans Triebel

Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

ARTICLE INFO

Article history: Received 24 May 2013 Accepted 13 August 2013 Available online 30 August 2013

ABSTRACT

The paper deals with weighted discrepancy and numerical integration in Euclidean *n*-space in the context of Faber bases for Besov–Sobolev spaces with dominating mixed smoothness. © 2013 Elsevier Inc. All rights reserved.

Keywords: Discrepancy Numerical integration Faber bases Besov-Sobolev spaces Dominating mixed smoothness

1. Introduction and main assertions

Let $Q = (0, 1)^n$ be the unit cube in \mathbb{R}^n , $n \in \mathbb{N}$, and $Q_M = M + Q$ with $M = (M_1, \dots, M_n) \in \mathbb{Z}^n$. Let $\Gamma = \{x^i\}_{i=1}^k$ be a set of $k \in \mathbb{N}$ points $x^j = (x_1^j, \dots, x_n^j)$ in \mathbb{R}^n and

$$R_{\Gamma}^{j} = \left\{ x \in Q_{M} : x_{l}^{j} < x_{l} < M_{l} + 1, \ l = 1, \dots, n \right\} \text{ if } M_{l} \le x_{l}^{j} < M_{l} + 1,$$

j = 1, ..., k, be rectangles anchored at the upper right corner of related cubes Q_M . Let $\chi_{R_{\Gamma}^j}$ be the characteristic function of R_{Γ}^j and let $A = \{a_j\}_{j=1}^k \subset \mathbb{C}$. Then the discrepancy function

$$\operatorname{disc}_{\Gamma,A}(x) = \prod_{l=1}^{n} (x_l - M_l) - \sum_{j:R_{\Gamma}^j \subset Q_M} a_j \chi_{R_{\Gamma}^j}(x) \quad \text{if } x \in Q_M,$$

$$(1.1)$$

 $M \in \mathbb{Z}^n$, extends the well-known discrepancy function from Q to \mathbb{R}^n modulo 1 as suggested in the classical papers [24,7]. If for given Q_M there are no R_{Γ}^j with $R_{\Gamma}^j \subset Q_M$ then disc $_{\Gamma,A}(x) = \prod_{l=1}^n (x_l - M_l)$.

E-mail address: hans.triebel@uni-jena.de.

⁰⁸⁸⁵⁻⁰⁶⁴X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jco.2013.08.002

Furthermore disc_{Γ,A}(x) = 0 for $x \in \mathbb{R}^n \setminus \bigcup_M Q_M$ (the faces of all Q_M). We measure disc_{Γ,A} in weighted function spaces. Let

$$w^{\alpha}(x) = \prod_{l=1}^{n} (1 + x_l^2)^{\alpha/2}, \quad x \in \mathbb{R}^n, \; \alpha \in \mathbb{R}.$$
 (1.2)

We are mainly interested in weighted Besov spaces $S_{p,p}^r B(\mathbb{R}^n, \alpha)$ of dominating mixed smoothness and related weighted (fractional) Sobolev spaces $S_p^r H(\mathbb{R}^n, \alpha)$ of dominating mixed smoothness defined below. Recall that $S_p^0 H(\mathbb{R}^n, \alpha) = L_p(\mathbb{R}^n, \alpha)$, 1 , normed by

$$\|f|_{L_p}(\mathbb{R}^n,\alpha)\| = \left(\int_{\mathbb{R}^n} w^{\alpha}(x)^p |f(x)|^p \, \mathrm{d}x\right)^{1/p}, \quad \alpha \in \mathbb{R}.$$
(1.3)

We extend the classical discrepancy $\operatorname{disc}_k(L_p(Q))$, $1 , <math>k \in \mathbb{N}$, and its modifications $\operatorname{disc}_k(S_{p,q}^r A(Q))$, where $S_{p,q}^r A(Q)$ are suitable spaces with dominating mixed smoothness in Q as considered in [20], to some weighted spaces on \mathbb{R}^n . Then

$$\operatorname{disc}_{k}\left(S_{p,p}^{r}B(\mathbb{R}^{n},\alpha)\right) = \inf\left\|\operatorname{disc}_{\Gamma,A}\left|S_{p,p}^{r}B(\mathbb{R}^{n},\alpha)\right\|\right.$$
(1.4)

where the infimum is taken over all $\Gamma = \{x^j\}_{j=1}^k \subset \mathbb{R}^n$ and all $A = \{a_j\}_{j=1}^k \subset \mathbb{C}$. Similarly for

$$\operatorname{disc}_{k}\left(S_{p}^{r}H(\mathbb{R}^{n},\alpha)\right) = \inf\left\|\operatorname{disc}_{\Gamma,A}|S_{p}^{r}H(\mathbb{R}^{n},\alpha)\right\|.$$
(1.5)

We add a comment below under which restrictions for r, p, α both (1.4) and (1.5) make sense. The close connection between discrepancy in $L_p(Q)$, $1 , and numerical integration in <math>L_{p'}(Q)$ is one of the cornerstones of this theory. We extended this relation in [20] to some spaces $S_{p,q}^r A(Q)$. One may ask for weighted counterparts. Let *UA* be the unit ball in the Banach space *A*. Let

$$1 1 \text{ and } r > \frac{1}{p}.$$
 (1.6)

Then

$$\operatorname{Int}_{k}\left(S_{p,p}^{r}B(\mathbb{R}^{n},\alpha)\right) = \inf\left[\sup_{f \in US_{p,p}^{r}B(\mathbb{R}^{n},\alpha)}\left|\int_{\mathbb{R}^{n}}f(x)\,\mathrm{d}x - \sum_{j=1}^{k}a_{j}f(x^{j})\right|\right],\tag{1.7}$$

 $k \in \mathbb{N}$, where the infimum is taken over all $\{x^j\}_{j=1}^k \subset \mathbb{R}^n$ and all $A = \{a_j\}_{j=1}^k \subset \mathbb{C}$. This is the extension of [21, Definition 4.11, p. 93] from \mathbb{R}^2 to \mathbb{R}^n as indicated in [21, Section 4.5]. For discussions and justifications we refer to [20, Chapter 5] and [21]. We only mention that r > 1/p ensures that pointwise evaluation $f(x^j)$ makes sense, which will also be discussed later on in connection with Faber bases. Furthermore it follows from $\alpha + \frac{1}{p} > 1$ that $S_{p,p}^r B(\mathbb{R}^n, \alpha) \hookrightarrow L_1(\mathbb{R}^n)$. Both together justifies (1.7). We need a minor modification of these integral numbers. Let f^{\neg} for $f \in S_{p,p}^r B(\mathbb{R}^n, \alpha)$ be as in Remark 2.9 and Corollary 2.8 below. Then

$$\operatorname{Int}_{k}\left(S_{p,p}^{r}B(\mathbb{R}^{n},\alpha)\right) = \inf\left[\sup_{f \in US_{p,p}^{r}B(\mathbb{R}^{n},\alpha)}\left|\int_{\mathbb{R}^{n}}f^{\neg}(x)\,\mathrm{d}x - \sum_{j=1}^{k}a_{j}f^{\neg}(x^{j})\right|\right],\tag{1.8}$$

 $k \in \mathbb{N}$, where the infimum has the same meaning as above. It is the main aim of this paper to prove the following assertions. But first we fix our use of \sim (equivalence) as follows. Let *I* be an arbitrary index set. Then $a_i \sim b_i$ for two sets of positive numbers $\{a_i : i \in I\}$ and $\{b_i : i \in I\}$ means that there are two positive numbers c_1 and c_2 such that $c_1a_i \leq b_i \leq c_2a_i$ for all $i \in I$.

Theorem 1.1. Let $n \in \mathbb{N}$ and

$$1 (1.9)$$

Download English Version:

https://daneshyari.com/en/article/4608676

Download Persian Version:

https://daneshyari.com/article/4608676

Daneshyari.com