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a b s t r a c t

Two designs are geometrically isomorphic if one design can be
obtained from the other by reordering the runs, relabeling the
factors and/or reversing the level order of one or more factors.
In this paper, some new necessary and sufficient conditions for
identifying geometric isomorphism of symmetric designs with
prime levels are provided. A new algorithm for checking geometric
isomorphism is proposed and a searching result for geometrically
non-isomorphic 3-level orthogonal arrays of 18 runs is presented.
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1. Introduction

Factorial designs are commonly used in various fields. In such an application, a number of fixed
levels are selected for each factor and then some level-combinations are chosen to be the runs in
an experiment. A factor can be either qualitative or quantitative. An important problem in practice
is the choice of optimal factorial designs. Optimal designs are naturally expected to be identified
according to some design criterion from a set of candidate designs. To assure that the optimal design
is indeed the global optimal one, the candidate set is usually very large, and even infinite for designs
with quantitative factors if we do not impose some discretization. The computer search is exhaustive.
To save time, one needs to tell whether two designs are in fact ‘‘equal’’ or not. For qualitative factors,
two designs are said to be equivalent or combinatorially isomorphic, if one design can be obtained
from the other by reordering the runs, relabeling the factors and/or switching the levels of one or
more factors. Since combinatorially isomorphic designs share the same statistical properties in the
classical ANOVA model and are essentially the same, we need only to consider one of them in any
search for optimal designs to avoid burdensome computations. However, the ANOVA model is not
suitable for a designwith quantitative factors, which aims to fit amodel that indicates the relationship
between the factors and response. Cheng andWu [5] reported that level permutations of a 3n−k design
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could lead to different model efficiencies when a polynomial model is fitted and defined the ‘‘model
isomorphism’’. Cheng and Ye [4] pointed out that such a model non-isomorphism is the result of
different geometric structures caused by permuting the levels of factors. Furthermore, they defined
geometric isomorphism for two designs with quantitative factors. Two designs are geometrically
isomorphic if one design can be obtained from the other by reordering the runs, relabeling the factors
and/or reversing the level order of one or more factors.

For two-level designs, combinatorial isomorphism is equivalent to geometric isomorphism and
has been studied extensively in the literature. Draper and Mitchell [7,8] proved that having the same
word-length pattern is necessary for the equivalence of two such designs. Draper andMitchell [9] and
Chen and Lin [2] showed that the letter pattern, which counts the frequencies of letters contained in
the definingwords of different lengths, does not uniquely determine a two-level design. Chen et al. [3]
proposed a comprehensive algorithm for detecting combinatorially isomorphic designs beyond the
comparisons of word-length patterns and letter patterns. Clark and Dean [6] presented a method of
determining isomorphism of any two factorial designs by examining the Hamming distance matrices
of their projection designs and provided an algorithm for checking the isomorphism of two-level
fractional factorial designs. Ma et al. [13] proposed an algorithm for detecting the combinatorial
isomorphism of two-level and high-level designs. Lin and Sitter [11] created a new isomorphism
check and constructed a complete catalog of non-isomorphic 2k−p designs, the final step in their
isomorphism check algorithm refers to that of Clark and Dean [6]. Recently, Liu et al. [12] proposed a
three-dimensional matrix named LIPM and showed that LIPM is an efficient tool for the isomorphism
check of regular two-level fractional factorial designs. However, necessary and sufficient conditions
for identifying geometric isomorphism had not been provided until Clark and Dean [6] gave some
discussions. Cheng and Ye [4] developed another one based on indicator functions in polynomial
forms.

This paper aims at providing some new necessary and sufficient conditions and an algorithm for
identifying geometric isomorphism and is organized as follows. Section 2 gives some preliminary
notation and results before the main results are presented. In Section 3, we propose some new
necessary and sufficient conditions for identifying geometric isomorphism of symmetric designs with
prime levels. In Section 4, a new algorithm for checking geometric isomorphism is proposed and a
searching result for geometrically non-isomorphic 3-level orthogonal arrays of 18 runs is presented.
Section 5 points out that some of the theoretical results are suitable for any symmetric design,
whatever levels it has.

2. Preliminary notation and results

A symmetric factorial design of N runs and n factors with p levels is an N × n matrix with entries
from a set of p symbols and denoted by (N, pn). Except in Section 5,we assume that p is a prime greater
than 2 and the p levels are taken to be (−p+1)/2, (−p+3)/2, . . . , (p−1)/2. If the pt possible level-
combinations appear equally often for any t columns of an (N, pn)-design, the design is said to be
an orthogonal array with strength t and denoted by OA(N, pn, t). When t = 1, the design is called
balanced, and when t ≥ 2, the columns of the design are said to be orthogonal with each other.

Consider the following equivalence classes partitioning the set Z of integers:
[(−p + 1)/2] = {(−p + 1)/2 + pk, k ∈ Z},

[(−p + 3)/2] = {(−p + 3)/2 + pk, k ∈ Z},

· · ·

[(p − 1)/2] = {(p − 1)/2 + pk, k ∈ Z}.

Wedefine twobinary operations on the setEp = {[(−p+1)/2+i], i = 0, . . . , p−1}of the equivalence
classes as

[a] + [b] = [a + b], [a] · [b] = [a · b],
where a is an element of set [a], so is b, and the sum a + b and product a · b are the ordinary sum
and product of a and b, respectively. Obviously, the set Ep forms a finite field, in which the identity
elements for the operation ‘‘+’’ and ‘‘·’’ are [0] and [1], respectively.
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