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a b s t r a c t

Metric entropy quantities, like covering numbers or entropy
numbers, and positive definite kernels play an important role in
mathematical learning theory. Using smoothness properties of the
Fourier transform of the kernels, Zhou [D.-X. Zhou, The covering
number in learning theory, J. Complexity 18 (3) (2002) 739–767]
proved an upper estimate for the covering numbers of the unit ball
of Gaussian reproducing kernel Hilbert spaces (RKHSs), considered
as a subset of the space of continuous functions.

In this note we determine the exact asymptotic order of these
covering numbers, exploiting an explicit description of Gaussian
RKHSs via orthonormal bases. We show that Zhou’s estimate is
almost sharp (up to a double logarithmic factor), but his conjecture
on the correct asymptotic rate is far too optimistic. Moreover we
give an application of our entropy results to small deviations of
certain smooth Gaussian processes.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The pioneering paper by Cucker and Smale [6] gave a new impetus to the statistical theory of
learning, which studies how to ‘‘learn’’ unknown objects from random samples. In particular they
demonstrated the important role of functional analytic methods in this context. For example, in order
to estimate the probabilistic error and the number of samples required for a given confidence level
and a given error bound, metric entropy quantities such as covering and entropy numbers are very
useful, see also the monographs by Cucker and Zhou [7] and by Steinwart and Christmann [17] and
the paper by Williamson et al. [21].

The concept of metric entropy is very basic and general, it has numerous applications in many
other branches of mathematics, e.g. in approximation theory, probability theory (small deviation
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problems for stochastic processes), operator theory (eigenvalue distributions of compact operators),
PDEs (spectral theory of pseudodifferential operators). For more information on these subjects we
refer to the articles by Kuelbs and Li [12] and Li and Linde [14] on small ball problems for Gaussian
measures, the monographs by König [11] and Pietsch [16] on eigenvalues of compact operators in
Banach spaces, and the book by Edmunds and Triebel [8] on function spaces and spectral theory of
PDEs.

If A is a subset of a metric space M and ε > 0, the covering number N (ε, A;M) is defined as
the minimal number of balls in M of radius ε which cover the set A. The centers of these balls form
an ε-net of A in M . A possibly wider known but closely related notion is Kolmogorov’s ε-entropy
H(ε, A;M) := logN (ε, A;M), see e.g. [10]. Obviously,

A is precompact ⇐⇒ N (ε, A;M) < ∞ for all ε > 0.

Thus the growth rate ofN (ε, A;M) orH(ε, A;M) as ε → 0 can be viewed as ameasure of the ‘‘degree
of compactness’’ or ‘‘massiveness’’ of the set A.

Many modern machine learning methods such as support vector machines use Gaussian radial
basis functions,which generate a reproducing kernelHilbert space.Motivated by these facts, Zhou [23]
studied covering numbers of the unit ball of RKHSs, considered as a subset of the space of continuous
functions. The results were expressed in terms of smoothness properties of the Fourier transform of
the kernels. To illustrate his general results he gave an upper estimate for these covering numbers
in the case of Gaussian RKHSs (see Example 4 on p. 761 ff. in [23]) and stated a conjecture about the
exact asymptotic behaviour (p. 763 f. in [23]). For further results in this direction see also [24,20].

Using completely different methods we determine the exact asymptotic behaviour of these
covering numbers. It turns out that Zhou’s upper estimate is almost sharp, up to a double logarithmic
factor, but his conjecture is too optimistic. Essential tools in our proof are recent results by Steinwart
et al. [18] on the structure of Gaussian RKHSs, in particular we exploit the specific orthonormal bases
(ONB) of these spaces given in [18]. A quite interesting detail of the proof of the lower bound is the
fact that finite sections of the famous Hilbert matrix come into play.

As an application we obtain the sharp asymptotic rate of small deviation probabilities of certain
smooth Gaussian processes. Here we use the close connection between metric entropy and small
deviations that was discovered by Kuelbs and Li [12].

The organization of the paper is as follows. In Section 2 we describe the necessary background
for our main result. We introduce covering numbers of (bounded linear) operators between Banach
spaces, a variant of the covering numbers defined above, and state some simple properties that will
be needed in the sequel. Moreover, we briefly recall some general facts from the theory of RKHSs and
the result from [18] on ONBs in Gaussian RKHSs. In Section 3 we state and prove our main result on
covering numbers, and Section 4 contains the application to small deviation probabilities.

2. Preliminaries

In this sectionwe fix notation and recall somewell-known basic facts concerning the two concepts
mentioned in the title—covering numbers and reproducing kernel Hilbert spaces. Throughout the
paper we consider only real Banach spaces, and ‘‘operator’’ always means ‘‘bounded linear operator
between Banach spaces’’. The Euclidean norm in any Rd will be denoted by ‖ · ‖2. For functions
f , g : (0,∞) → R we write

f (ε) ∼ g(ε)(strong equivalence), if lim
ε→0

f (ε)
g(ε)

= 1 and

f (ε) ≍ g(ε)(weak equivalence), if 0 < lim inf
ε→0

f (ε)
g(ε)

≤ lim sup
ε→0

f (ε)
g(ε)

< ∞.

The same notation will be used for sequences and n → ∞.
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