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a b s t r a c t

Beyer et al. gave a sufficient condition for the high dimensional
phenomenon known as the concentration of distances. Their work
has pinpointed serious problems due to nearest neighbours not
being meaningful in high dimensions. Here we establish the
converse of their result, in order to answer the question as to when
nearest neighbour is stillmeaningful in arbitrarily high dimensions.
We then show for a class of realistic data distributions having
non-i.i.d. dimensions, namely the family of linear latent variable
models, that the Euclidean distance will not concentrate as long
as the amount of ‘relevant’ dimensions grows no slower than the
overall data dimensions. This condition is, of course, often not met
in practice. After numerically validating our findings, we examine
real data situations in two different areas (text-based document
collections and gene expression arrays), which suggest that the
presence or absence of distance concentration in high dimensional
problems plays a role inmaking the data hard or easy toworkwith.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In an influential paper, Beyer et al. [1] point out a serious threat for indexing and similarity-based
retrieval in high dimensional databases, due to the following phenomenon, called the concentration of
distances: As the dimensionality of the data space grows, the distance to the nearest point approaches
the distance to the farthest one. Nearest neighbours becomemeaningless. The underlying geometry of
this phenomenon was further studied in [2], strongly suggesting the detrimental effects often termed
informally as the ‘curse of dimensionality’ are attributable to this phenomenon.
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Beyond exponentially slowing down data retrieval [2], the problem of distance concentration
is becoming a major concern more generally for high dimensional multivariate data analysis, and
risks to compromise our ability to extract meaningful information from volumes of data [3,4]. This
is because in many domains of science and engineering, the dimensionality of real data sets grows
very quickly, while all data processing and analysis techniques routinely rely on the use of some
notion of distance [4]. In particular, high impact application areas, such as cancer research, produce
simultaneousmeasurements of the order of several thousands. As pointed out in [3], currently existing
multivariate data analysis techniques were not designed with an awareness of such counter-intuitive
phenomena intrinsic to very high dimensions. It is therefore imperative for this problem to be studied
and better understood in its own right, before one can embark on trying to devise more appropriate
computational techniques for high dimensional problems.
Despite its title ‘‘When is nearest neighbour meaningful’’ [1], the paper in fact answers a different

question, namely ‘‘When nearest neighbour is not meaningful’’. In formal terms, they give a sufficient
condition for the concentration phenomenon. However, knowing the answer to the previous question
would be very important and useful, since then onewould have an objective to work towards in order
to get round of the problem, in principle. This is what we address in this paper.
Although many previous authors mention, and admit on the basis of empirical evidence, that

cases exist when the nearest neighbour is still meaningful in high dimensions [5,1,4], generally valid
formal conditions are still lacking. All recent formal analyses have been conducted assuming data
distributions with i.i.d. dimensions [6,4], which is unrealistic in most real settings. Yet, it has been
observed that, if techniques for mitigating the concentration phenomenon are used carelessly, they
may actually end up having a detrimental effect [4].
Herewemake the following contributions:We establish the converse of Beyer et al.’s result, which

gives us a generic answer to when nearest neighbour is meaningful in arbitrarily high dimensions.
Then,we give a class of examples of realistic data distributions having non-i.i.d. dimensions, wherewe
show the Euclidean distance will not concentrate when the dimensionality increases without bounds,
as long as the amount of ‘relevant’ dimensions grows no slower than the overall data dimensions. Of
course, this condition is not always met in practice; examples will follow later.
These results provide a formal explanation for previous informal and empirical observations, such

as [5] ‘‘increasing the input space dimension without enhancing the quantity of available information
reduces the model’s power and may give rise to the curse of dimension’’. Our theoretical result also
provides a generic criterion that may be used as an objective to work towards in order to counter the
problem when necessary.

2. Distance concentration

Let Fm,m = 1, 2, . . . be an infinite sequence of data distributions and x(m)1 , . . . , x(m)n a random
sample of n independent data vectors distributed as Fm. An arbitrary random vector distributed as Fm
will be referred to as x(m). For eachm, let ‖ · ‖ : dom(Fm)→ R+ be a function that takes a point from
the domain of Fm and returns a positive real value. Further, p > 0 will denote an arbitrary positive
constant, and it is assumed that E[‖x(m)‖p] and Var[‖x(m)‖p] are finite and E[‖x(m)‖p] 6= 0 throughout
this section.
In the context of the problem at hand, the interpretation of the function ‖ · ‖ is that of a distance

metric (or norm)—though the theory does not rely on this interpretation, i.e. there is no requirement
for it to satisfy the properties of a metric. Similarly, the positive integer mmay be interpreted as the
dimensionality of the data space.

Theorem 1 (Beyer et al. [1]). If limm→∞ Var[‖x(m)‖p]
E[‖x(m)‖p]2 = 0, then ∀ε > 0, limm→∞ P[max1≤j≤n ‖x

(m)
j ‖ <

(1+ε)min1≤j≤n ‖x
(m)
j ‖] = 1; where the operators E[·] and Var[·] refer to the theoretical expectation and

variance of the distributions Fm, and the probability on the r.h.s. is over the random sample of size n drawn
from Fm.

The proof can be found in [1].
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