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a b s t r a c t

This article studies two-level nonregular factorial split-plot de-
signs. The concepts of indicator function and aliasing are intro-
duced to study such designs. The minimum G-aberration criterion
proposed byDeng and Tang (1999) [4] for two-level nonregular fac-
torial designs is extended to the split-plot case. A method to con-
struct thewhole-plot and sub-plot parts is proposed for nonregular
designs. Furthermore, the optimal split-plot schemes for 12-, 16-,
20- and 24-run two-level nonregular factorial designs are searched,
and many such schemes are tabulated for practical use.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A split-plot design is often used when it is not practical to perform all the experimental runs of
a multifactorial experiment in a completely random order. Recently, many authors have focused on
fractional factorial split-plot (FFSP) designs, see e.g., [8,1,19,15,17,16,3] and the references therein.
To perform an FFSP design with m factors, we often first randomly choose one of the factorial level-
settings of these, say m1, hard-to-change factors and then run all of the level-combinations of the
remaining m2(= m − m1) factors in a random order, while holding the m1 factors fixed. This is
repeated for each level-combination of these m1 factors. If the design matrix for this experimental
setup is identical to a 2m−k fractional factorial (FF) design, where m = m1 + m2 and k = k1 + k2,
then it is said to be a 2(m1+m2)−(k1+k2) FFSP design. The m1 and m2 factors are called whole-plot (WP)
and sub-plot (SP) factors, respectively. There are k1 WP and k2 SP fractional generators. The group
formed by the k = k1 + k2 generators is called the defining contrast subgroup. Let Ai denote the
number of words of length i in the defining contrast subgroup of a 2(m1+m2)−(k1+k2) design, then the
vector W = (A3, . . . , Am) is called the word-length pattern of the design. The maximum resolution
and minimum aberration (MA) criteria can then be defined [8,1].

∗ Corresponding author.
E-mail address:mqliu@nankai.edu.cn (M.-Q. Liu).

0885-064X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2012.02.003

http://dx.doi.org/10.1016/j.jco.2012.02.003
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:mqliu@nankai.edu.cn
http://dx.doi.org/10.1016/j.jco.2012.02.003


460 X.-M. Zi et al. / Journal of Complexity 28 (2012) 459–467

All the papersmentioned above discussed only split-plot schemes for regular FF designs. However,
nonregular factorial designs have some advantages over regular ones in terms of run size flexibility
and estimation capacity. Therefore, they are becoming popular choices in practice, and in many
situations they need to possess a split-plot structure. In this article, we extend the minimum
G-aberration (MGA) criterion proposed by Deng and Tang [4] for two-level nonregular factorial
designs to the split-plot case, and provide a method for constructing two-level nonregular factorial
split-plot designs from Hadamard matrices.

2. Indicator function and aliasing

In this section, a polynomial representation for general two-level factorial designs is presented. It
applies to any two-level factorial design, with or without replicates, regular or nonregular, and can
set up the mathematical framework for studying nonregular factorial split-plot designs.

2.1. Indicator function

Let F be a 2m full factorial design. Without loss of generality, the levels of each factor in F are
denoted by 1 and−1.We use an n×mmatrix of 1 and−1 to represent a factorial designD, where each
row of the matrix corresponds to a run and each column to a factor. According to Refs. [18,2], we have

Definition 1. A factorial design D corresponds to a unique polynomial function defined on F with the
form

FD(x1, . . . , xm) = h0 +

m
k=1


1≤i1<···<ik≤m

hi1···ikxi1 · · · xik , (1)

where h0 = n/2m, hi1···ik =
1
2m


X∈D xi1 · · · xik , and X = (x1, . . . , xm) represents a design point in

F . The summation


X∈D xi1 · · · xik can be viewed as a general inner product of k columns of D. The
polynomial function (1) is called the indicator function of D, the polynomial terms appearing in (1)
(i.e., those polynomial terms with nonzero coefficients) are called the words of D, and these words
form the defining contrast subgroup of D.

The indicator function approach can be generalized to factorial split-plot designs directly. A distinction
between a completely randomized design and a factorial split-plot design is that in the latter there
are two types of factors, WP factors and SP factors. Now let us see two illustrative examples. The first
one is modified from an example given byMontgomery [12, p. 307] for the purpose of the illustration.

Example 1. Suppose we wish to perform an experiment to identify factor settings that will improve
the efficiency of a ball mill. Engineers have identified six potentially important factors, each at two
levels: motor speed X1, feed mode X2, feed sizing X3, material type X4, gain X5, and screen angle X6.
Suppose that it is expensive or time consuming to change the levels of X1, X2, X3 and X4, and there
are only enough resources to perform 16 experimental runs. Let the defining contrast subgroup for
a regular FFSP design D1 be I = X1X2X3X4 = X2X3X5X6 = X1X4X5X6, that is, D1 is a 2(4+2)−(1+1)

FFSP design with X4 = X1X2X3 as the WP part and X6 = X2X3X5 as the SP part. The WP part for this
experiment is a 24−1 FF design, while the SP part is a design with generator X2X3X5X6, selected from
the interactions of WP and SP factors. For D1, the word-length pattern is (0, 3, 0, 0), and its indicator
function is:

FD1(x1, . . . x6) =
1
4
(1 + x1x2x3x4)(1 + x2x3x5x6)

=
1
4
(1 + x1x2x3x4 + x2x3x5x6 + x1x4x5x6). (2)

For any X = (x1, . . . , x6) ∈ D1, FD1(X) = 1 because x1x2x3x4 = 1 and x1x4x5x6 = 1, while for any
X ∈ F \D1 with F = 26, we have FD1(X) = 0, since either x1x2x3x4 = −1 or x1x4x5x6 = −1. Therefore,
the polynomial in (2) determines the design D1.
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