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a b s t r a c t

We give new improvements to the Chudnovsky–Chudnovsky
method that provides upper bounds on the bilinear complexity of
multiplication in extensions of finite fields through interpolation
on algebraic curves. Our approach features three independent key
ingredients.

• We allow asymmetry in the interpolation procedure. This
allows to prove, via the usual cardinality argument, the
existence of auxiliary divisors needed for the bounds, up to
optimal degree.

• We give an alternative proof for the existence of these auxiliary
divisors, which is constructive, andworks also in the symmetric
case, although it requires the curves to have sufficiently many
points.

• We allow the method to deal not only with extensions of finite
fields, but more generally with monogeneous algebras over
finite fields. This leads to sharper bounds, and is designed also
to combine well with base field descent arguments in case the
curves do not have sufficiently many points.

As amain application of these techniques,we fix errors in, improve,
and generalize, previous works of Shparlinski–Tsfasman–Vladut,
Ballet, and Cenk–Özbudak. Besides, generalities on interpolation
systems, as well as on symmetric and asymmetric bilinear
complexities, are also discussed.
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0. Introduction

The bilinear complexity µ(A/K) of a finite-dimensional algebra A over a field K measures the
essential minimal number of two-variable multiplications in K needed to perform a multiplication
in A, and considering other operations, such as multiplication by a constant, as having no cost. More
intrinsically, it can be defined as the rank of the tensor in

A ⊗ A∨
⊗ A∨ (1)

naturally deduced from the multiplication map in A.
The study of µ(A/K), and the effective derivation of multiplication algorithms, are of both

theoretical and practical importance. Pioneering works in this field are Karatsuba’s algorithm [23]
for integer and polynomial multiplication, and Strassen’s algorithm [33] for matrix multiplication.

There are (at least) two ways in which these questions could be addressed from an algebraic
geometry point of view. These two approaches are seemingly unrelated, although, to the author’s
knowledge, possible links between the two have never been seriously studied (nor will they be here).
The first one is to consider tensors of rank 1 as defining points of a certain Segre variety, and tensors of
higher rank, points of its successive secant varieties. This leads to deep and beautiful problems [35,24],
but we will not be interested in this approach here. The second one is through the theory of
interpolation. Karatsuba’s algorithm may be interpreted as follows: evaluate the polynomials at the
points 0, 1,∞ of the projective line, multiply these values locally, and interpolate the results to
reconstruct the product polynomial. Replacing the line with algebraic curves of higher genus allowed
Chudnovsky and Chudnovsky in [17] to first prove that the bilinear complexity of multiplication
in certain extensions of finite fields grows at most linearly with the degree. For example, letting
µq(n) = µ(Fqn/Fq), their result implies

lim inf
n→∞

1
n
µq(n) ≤ 2


1 +

1
√
q − 3


(2)

for q ≥ 25 a square.
Several improvements and variants of the Chudnovsky–Chudnovsky algorithm were then

proposed by various authors in order to give sharper or more general asymptotic, as well as non-
asymptotic, upper bounds. Roughly speaking, they all rely on the following three ingredients:

(a) A ‘‘generic’’ interpolation process which explains how to derive these upper bounds from the
existence, postulated a priori, of certain geometric objects. These objects are:

(b) Algebraic curves having ‘‘good’’ parameters, meaning, most of the time, that they have sufficiently
many points of various degrees, and controlled genus.

(c) Divisors on these curves, such that certain evaluation maps associated to them are injective or
surjective. Often this can be reformulated as requiring the existence of systems of simultaneously
zero-dimensional or non-special divisors of a certain form and appropriate degree.

These three points are important. However remark that a well-designed algorithm in (a) should
make the existence of the objects (b) and (c) it needs easier to check. In this paper we will give new
contributions to (a), and also to (c), and then proceed to some direct, but hopefully already significant,
applications (further applications could be given, but they require combination with quite different
methods, so they will be treated elsewhere).
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