

Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/jco)

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Complexity bounds for second-order optimality in unconstrained optimization

C. Cartis^{[a,](#page-0-0)*}, N.I.M. Gould^{[b](#page-0-2)}, Ph.L. Toint^{[c](#page-0-3)}

a *School of Mathematics, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JZ, Scotland, UK*

^b *Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, UK*

^c *Namur Center for Complex Systems (naXys), FUNDP—University of Namur, 61, rue de Bruxelles, B-5000 Namur, Belgium*

a r t i c l e i n f o

Article history: Received 17 December 2010 Accepted 26 May 2011 Available online 14 June 2011

Keywords: Evaluation complexity Worst-case analysis Nonconvex optimization Second-order optimality conditions

a b s t r a c t

This paper examines worst-case evaluation bounds for finding weak minimizers in unconstrained optimization. For the cubic regularization algorithm, Nesterov and Polyak (2006) [\[15\]](#page--1-0) and Cartis et al. (2010) [\[3\]](#page--1-1) show that at most $O(\epsilon^{-3})$ iterations may have to be performed for finding an iterate which is within ϵ of satisfying second-order optimality conditions. We first show that this bound can be derived for a version of the algorithm, which only uses one-dimensional global optimization of the cubic model and that it is sharp. We next consider the standard trust-region method and show that a bound of the same type may also be derived for this method, and that it is also sharp in some cases. We conclude by showing that a comparison of the bounds on the worst-case behaviour of the cubic regularization and trust-region algorithms favours the first of these methods.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider algorithms for the solution of the unconstrained (possibly nonconvex) optimization problem

$$
\min_{\mathbf{x}} f(\mathbf{x}) \tag{1.1}
$$

where we assume that $f : \mathbb{R}^n \to \mathbb{R}$ is smooth (in a sense to be specified later) and bounded below. All methods for the solution of (1.1) are iterative and, starting from some initial guess x_0 , generate a sequence {*xk*} of iterates approximating a critical point of *f* . Many such algorithms exist, and they are

Corresponding author.

0885-064X/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. [doi:10.1016/j.jco.2011.06.001](http://dx.doi.org/10.1016/j.jco.2011.06.001)

E-mail addresses: coralia.cartis@ed.ac.uk (C. Cartis), nick.gould@sftc.ac.uk (N.I.M. Gould), philippe.toint@fundp.ac.be (Ph.L. Toint).

often classified according to their requirements in terms of computing derivatives of the objective function. In this paper, we focus on second-order methods, that is, methods which evaluate the objective function $f(x)$, its gradient $g(x)$ and its Hessian $H(x)$ (or an approximation thereof) at every iteration. The advantage of these methods is that they can be expected to converge to solutions *x*∗ satisfying the second-order optimality conditions

$$
\nabla_{x} f(x_{*}) = 0, \quad \text{and} \quad \lambda_{\min}(H(x_{*})) \ge 0 \tag{1.2}
$$

where $\lambda_{\min}(A)$ is the smallest eigenvalue of the symmetric matrix A, rather than only satisfying firstorder optimality (i.e., the first of these relations). In practice, however, a second-order algorithm is typically terminated as soon as an iterate x_k is found which is within ϵ of satisfying [\(1.2\),](#page-1-0) that is, such that

$$
\|\nabla_x f(x_k)\| \le \epsilon_g \quad \text{and} \quad \lambda_{\min}(H(x_k)) \ge -\epsilon_H,\tag{1.3}
$$

for some user-specified tolerances ϵ_g , $\epsilon_H \in (0, 1)$, where $||\cdot||$ denotes the Euclidean norm. It is then of interest to bound the number of iterations which may be necessary to find an iterate satisfying [\(1.3\)](#page-1-1) as a function of the thresholds ϵ_g and ϵ_H . It is the purpose of worst-case complexity analysis to derive such bounds. Many results are available in the literature for the case where the objective function *f* is convex (see, for instance, [\[13](#page--1-2)[,14,](#page--1-3)[12](#page--1-4)[,1\]](#page--1-5)). The convergence to approximate first-order points in the nonconvex case has also been investigated for some time (see [\[16–18,](#page--1-6)[15](#page--1-0)[,10,](#page--1-7)[3–5](#page--1-1)[,8\]](#page--1-8), or [\[19\]](#page--1-9)).

Of particular interest here is the Adaptive Regularization with Cubics (ARC) algorithm independently proposed by Griewank [\[11\]](#page--1-10), Weiser et al. [\[20\]](#page--1-11) and Nesterov and Polyak [\[15\]](#page--1-0), whose worst-case complexity was shown in the last of these references to be of $O(\epsilon_g^{-3/2})$ iterations for finding an iterate *x^k* satisfying the approximate first-order optimality conditions (the first relation in [\(1.3\)](#page-1-1) only) and of $O(\epsilon_H^{-3})$ iterations for finding an iterate x_k satisfying the whole of [\(1.3\).](#page-1-1)^{[1](#page-1-2)} These results were extended by Cartis et al. [\[3\]](#page--1-1) to an algorithm no longer requiring the computation of exact second-derivatives (but merely of a suitably accurate approximation), nor an (also possibly approximate) knowledge of the objective function's Hessian's Lipschitz constant. More importantly, these authors showed that the $O(\epsilon_g^{-3/2})$ complexity bound for convergence to first-order critical points can be achieved without requiring multi-dimensional global optimization of the cubic model (see [\[6\]](#page--1-12)). However, such a global minimization on nested Krylov subspaces of increasing dimensions was still required to obtain the $O(\epsilon_H^{-3})$ convergence to second-order critical points.

The present paper focuses on worst-case complexity bounds for convergence to second-order critical points and shows that, as in the first-order case, multi-dimensional global minimization of the cubic model is unnecessary for obtaining the mentioned $O(\epsilon_H^{-3})$ bound for the ARC algorithm. This latter bound is also shown to be sharp. We also prove that a bound of the same type holds for the standard trust-region method. Moreover, we show that it is also sharp for a range of relative values of ϵ_g and ϵ_H . We finally compare the known bounds for the ARC and trust-region algorithms and show that the ARC algorithm is always as good or better from this point of view.

The ARC algorithm is recalled in Section [2](#page-1-3) and the associated complexity bounds are derived without multi-dimensional global minimization. Section [3](#page--1-13) then discusses an example showing that the bound on convergence of the ARC algorithm to approximate second-order critical points is sharp. A bound of this type is derived in Section [4](#page--1-14) for the trust-region methods, its sharpness for suitable values of ϵ_g and ϵ_H is demonstrated, and the comparison with the ARC algorithm discussed. Conclusions and perspectives are finally presented in Section [5.](#page--1-15)

2. The ARC algorithm and its worst-case complexity

The Adaptive Regularization with Cubics (ARC) algorithm is based on the approximate minimization, at iteration *k*, of the (possibly nonconvex) cubic model

$$
m_k(s) = \langle g_k, s \rangle + \frac{1}{2} \langle s, B_k s \rangle + \frac{1}{3} \sigma_k ||s||^3,
$$
\n(2.1)

¹ It appears that this latter result is the first worst-case complexity bound for convergence to approximate second-order critical points ever proved.

Download English Version:

<https://daneshyari.com/en/article/4608946>

Download Persian Version:

<https://daneshyari.com/article/4608946>

[Daneshyari.com](https://daneshyari.com)