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a b s t r a c t

This paper examines worst-case evaluation bounds for finding
weak minimizers in unconstrained optimization. For the cubic
regularization algorithm, Nesterov and Polyak (2006) [15] and
Cartis et al. (2010) [3] show that at most O(ϵ−3) iterations may
have to be performed for finding an iterate which is within ϵ of
satisfying second-order optimality conditions. We first show that
this bound can be derived for a version of the algorithm,which only
uses one-dimensional global optimization of the cubic model and
that it is sharp.We next consider the standard trust-regionmethod
and show that a bound of the same type may also be derived for
this method, and that it is also sharp in some cases. We conclude
by showing that a comparison of the bounds on the worst-case
behaviour of the cubic regularization and trust-region algorithms
favours the first of these methods.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider algorithms for the solution of the unconstrained (possibly nonconvex) optimization
problem

min
x

f (x) (1.1)

where we assume that f : Rn
→ R is smooth (in a sense to be specified later) and bounded below.

All methods for the solution of (1.1) are iterative and, starting from some initial guess x0, generate a
sequence {xk} of iterates approximating a critical point of f . Many such algorithms exist, and they are
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often classified according to their requirements in terms of computing derivatives of the objective
function. In this paper, we focus on second-order methods, that is, methods which evaluate the
objective function f (x), its gradient g(x) and its Hessian H(x) (or an approximation thereof) at every
iteration. The advantage of these methods is that they can be expected to converge to solutions x∗

satisfying the second-order optimality conditions
∇xf (x∗) = 0, and λmin(H(x∗)) ≥ 0 (1.2)

where λmin(A) is the smallest eigenvalue of the symmetric matrix A, rather than only satisfying first-
order optimality (i.e., the first of these relations). In practice, however, a second-order algorithm is
typically terminated as soon as an iterate xk is found which is within ϵ of satisfying (1.2), that is, such
that

∥∇xf (xk)∥ ≤ ϵg and λmin(H(xk)) ≥ −ϵH , (1.3)
for some user-specified tolerances ϵg , ϵH ∈ (0, 1), where ∥·∥ denotes the Euclidean norm. It is then of
interest to bound the number of iterations which may be necessary to find an iterate satisfying (1.3)
as a function of the thresholds ϵg and ϵH . It is the purpose of worst-case complexity analysis to derive
such bounds. Many results are available in the literature for the case where the objective function f
is convex (see, for instance, [13,14,12,1]). The convergence to approximate first-order points in the
nonconvex case has also been investigated for some time (see [16–18,15,10,3–5,8], or [19]).

Of particular interest here is the Adaptive Regularization with Cubics (ARC) algorithm
independently proposed by Griewank [11], Weiser et al. [20] and Nesterov and Polyak [15], whose
worst-case complexity was shown in the last of these references to be of O(ϵ

−3/2
g ) iterations for

finding an iterate xk satisfying the approximate first-order optimality conditions (the first relation
in (1.3) only) and of O(ϵ−3

H ) iterations for finding an iterate xk satisfying the whole of (1.3).1 These
results were extended by Cartis et al. [3] to an algorithm no longer requiring the computation of
exact second-derivatives (but merely of a suitably accurate approximation), nor an (also possibly
approximate) knowledge of the objective function’s Hessian’s Lipschitz constant. More importantly,
these authors showed that theO(ϵ

−3/2
g ) complexity bound for convergence to first-order critical points

can be achievedwithout requiringmulti-dimensional global optimization of the cubicmodel (see [6]).
However, such a global minimization on nested Krylov subspaces of increasing dimensions was still
required to obtain the O(ϵ−3

H ) convergence to second-order critical points.
The present paper focuses on worst-case complexity bounds for convergence to second-order

critical points and shows that, as in the first-order case, multi-dimensional global minimization of
the cubic model is unnecessary for obtaining the mentioned O(ϵ−3

H ) bound for the ARC algorithm.
This latter bound is also shown to be sharp. We also prove that a bound of the same type holds for the
standard trust-region method. Moreover, we show that it is also sharp for a range of relative values of
ϵg and ϵH . We finally compare the known bounds for the ARC and trust-region algorithms and show
that the ARC algorithm is always as good or better from this point of view.

The ARC algorithm is recalled in Section 2 and the associated complexity bounds are derived
without multi-dimensional global minimization. Section 3 then discusses an example showing that
the bound on convergence of the ARC algorithm to approximate second-order critical points is sharp. A
bound of this type is derived in Section 4 for the trust-regionmethods, its sharpness for suitable values
of ϵg and ϵH is demonstrated, and the comparison with the ARC algorithm discussed. Conclusions and
perspectives are finally presented in Section 5.

2. The ARC algorithm and its worst-case complexity

The Adaptive Regularization with Cubics (ARC) algorithm is based on the approximate
minimization, at iteration k, of the (possibly nonconvex) cubic model

mk(s) = ⟨gk, s⟩ +
1
2
⟨s, Bks⟩ +

1
3
σk∥s∥3, (2.1)

1 It appears that this latter result is the first worst-case complexity bound for convergence to approximate second-order
critical points ever proved.
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