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a b s t r a c t

The Gauss–Newton method for solving nonlinear least squares
problems is studied in this paper. Under the hypothesis that
the derivative of the function associated with the least square
problem satisfies a majorant condition, a local convergence
analysis is presented. This analysis allows us to obtain the optimal
convergence radius and the biggest range for the uniqueness of
stationary point, and to unify two previous and unrelated results.
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1. Introduction

We consider the nonlinear least squares problem

min
x∈Ω

‖F(x)‖2, (1)

where Ω ⊆ X is an open set and F : Ω → Y is a continuously differentiable nonlinear function, with
X and Y being real or complex Hilbert spaces. The interest in this problems arises in data fitting, when
X = Rn and Y = Rm, where m is the number of observations and n is the number of parameters;
see [11,19].

Denote by F ′(x) the derivative of F at a point x ∈ Ω . When the derivative F ′(x) is injective, the
problem of finding a stationary point of problem (1), that is, a solution of the nonlinear equation

F ′(x)∗F(x) = 0,
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where A∗ denotes the adjoint of the operator A, is equivalent to finding a least squares solution of the
overdetermined nonlinear equation

F(x) = 0. (2)

This problem has been extensively studied by Dedieu and Kim [8] and Dedieu and Shub [10] for
analytic functions, and in the Riemannian context by Adler et al. [1].

When F ′(x) is injective and has a closed image for all x ∈ Ω , the Gauss–Newton method finds
stationary points of the above problem. Formally, the Gauss–Newton method is described as follows.
Given an initial point x0 ∈ Ω , define

xk+1 = xk − [F ′(xk)∗F ′(xk)]−1F ′(xk)∗F(xk), k = 0, 1, . . . .

If the above method converges to x∗ ∈ Ω , then x∗ is a stationary point of problem (1), but we cannot
conclude that x∗ is a solution of (1) or F(x∗) = 0. In order to ensure that a stationary point x∗ is a
solution of (1), we have to apply optimality conditions. It is worth pointing that, if F ′(x) is invertible for
all x ∈ Ω , then theGauss–Newtonmethod becomes theNewtonmethod. Earlyworks dealingwith the
convergence of the Newton and Gauss–Newton methods include [1–3,5–10,12–14,17,18,20,21,24].

It is well known that the Gauss–Newton method may fail or even fail to be well defined; see
the example on p. 225 of [11] and the example in [10]. To ensure that the method is well defined
and converges to a stationary point of (1), some conditions must be imposed. For instance, classical
convergence analysis (see [11,19]) requires that F ′ satisfies the Lipschitz condition and that the initial
iterate is ‘close enough’ to the solution, but it cannot make us clearly see how big the convergence
radius of the ball is. For the analytic function, Dedieu and Shub [10] have given an estimate of the
convergence radius and a criterion for convergence of the Gauss–Newton method.

Our aim in this paper is to present a new local convergence analysis for the Gauss–Newtonmethod
under a majorant condition as introduced by Kantorovich [16], and successfully used by Ferreira [12],
Ferreira and Gonçalves [13] and Ferreira and Svaiter [14] for studying the Newton method. In our
analysis, the classical Lipschitz condition is relaxed using a majorant function. It is worth pointing out
that this condition is equivalent to Wang’s condition as introduced in [24] and used by Chen, Li [6,7]
and Li et al. [17,18] for studying the Gauss–Newton and Newton methods. The convergence analysis
presented provides a clear relationship between the majorant function, which relaxes the Lipschitz
continuity of the derivative, and the function associated with the nonlinear least square problem (see,
for example, Lemmas 13–15). Besides, the results presented here have made the conditions and the
proof of convergence simpler. They also allow us to obtain the biggest range for the uniqueness of the
stationary point and the optimal convergence radius for themethod as regards themajorant function.
Moreover, two previous and unrelated results pertaining to the Gauss–Newton method are unified:
namely, the result for analytic functions the appeared in Dedieu and Shub [10] and the classical one
for functions with Lipschitz derivative (see, for example, [11] and [19]).

The organization of the paper is as follows. In Section 1.1, we list some notation and basic results
used in our presentation. In Section 2, the main result is stated, and in Section 2.1, some properties
involving the majorant function are established. In Section 2.2, we present the relationships between
themajorant function and the nonlinear function F , and in Section 2.3, the optimal ball of convergence
and the uniqueness of the stationary point are established. In Section 2.4, the main result is proved,
and some applications of this result are given in Section 3.

1.1. Notation and auxiliary results

The following notation and results are used throughout our presentation. Let X and Y be Hilbert
spaces. The open and closed balls at a ∈ X and radius δ > 0 are denoted, respectively, by

B(a, δ) := {x ∈ X; ‖x − a‖ < δ}, B[a, δ] := {x ∈ X; ‖x − a‖ ⩽ δ}.

The set Ω ⊆ X is an open set, the function F : Ω → Y is continuously differentiable, and F ′(x) has a
closed image in Ω .

LetA : X → Ybe a continuous and injective linear operatorwith closed image. TheMoore–Penrose
inverse AĎ : Y → X of A is defined by



Download	English	Version:

https://daneshyari.com/en/article/4609057

Download	Persian	Version:

https://daneshyari.com/article/4609057

Daneshyari.com

https://daneshyari.com/en/article/4609057
https://daneshyari.com/article/4609057
https://daneshyari.com/

