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A note on a modification of Moser’s method
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Abstract

We use a recurrence technique to obtain semilocal convergence results for Ulm’s iterative method to
approximate a solution of a nonlinear equation F(x) = 0{

xn+1 = xn − BnF(xn), n�0,

Bn+1 = 2Bn − BnF ′(xn+1)Bn, n�0.

This method does not contain inverse operators in its expression and we prove it converges with the Newton
rate. We also use this method to approximate a solution of integral equations of Fredholm-type.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider an operator F defined in an open, convex and nonempty subset � of
a Banach space X with values in another Banach space Y.

We consider the problem of approximating a solution x∗ of a nonlinear equation

F(x) = 0. (1)

Without any doubt Newton’s method is the most used iterative process to solve this problem. It
is given by the algorithm: xn+1 = xn − F ′(xn)

−1F(xn), n�0 for x0 given. This iterative process
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has quadratic R-order of convergence so its speed of convergence and its operational cost is quite
balanced.

Other methods, such as higher order methods also include in their expression the inverse of the
operator F ′. To avoid this problem, Newton-type methods: xn+1 = xn − HnF(xn), where Hn is
an approximation of F ′(xn)

−1 are considered. One of these methods was proposed by Moser in
[4] in this way. Given x0 ∈ � and A0 ∈ L(Y, X), the following sequences are defined

xn+1 = xn − AnF(xn), n�0, (2)

An+1 = An − An(F
′(xn)An − IX), n�0, (3)

where IX is the identity operator in X. The first equation is similar to Newton’s method, but
replacing the operator F ′(xn)

−1 by a linear operator An. The second equation is Newton’s method
applied to equation gn(A) = 0 where gn : L(Y, X) → L(X, Y ) is defined by gn(A) = A−1 −
F ′(xn). So {An} gives us an approximation of F ′(xn)

−1.
In addition, it can be shown that the rate of convergence for the above scheme is (1 + √

5)/2,
provided the root of (1) is simple [4]. However, this is unsatisfactory from a numerical point of
view because the scheme uses the same amount of information per step as Newton’s method, yet,
it converges no faster than the secant method.

Moser’s method was developed as a technical tool for investigating the stability of the N-body
problem in celestial mechanics. The main difficulty in this, and similar problems involving small
divisors, is the solution of a system of nonlinear partial differential equations. In essence, Moser’s
idea is to solve the problem by a sequence of changes of variables.

In [10] Ulm proposed the following iterative method to solve nonlinear equations. Given x0 ∈ �
where F is a Fréchet-differentiable operator and B0 ∈ L(Y, X), Ulm defines{

xn+1 = xn − BnF(xn), n�0,

Bn+1 = 2Bn − BnF
′(xn+1)Bn, n�0.

(4)

Notice that, here F ′(xn+1) appears instead of F ′(xn) in (3). This is crucial for obtaining fast
convergence. Under certain assumptions, Ulm showed, that the method generates successive
approximations that converge to a solution of (1), asymptotically as fast as Newton’s method.
Ulm applied the method to several particular classes of operator equations.

The method exhibits several attractive features. First, it converges with the Newton rate. Second,
it is inverse free: you do not need to solve a linear equation at each iteration. Third, in addition
to solve the nonlinear equation (1), the method produces successive approximations {Bn} to the
value of F ′(x∗)−1, being x∗ a solution of (1). This property is very helpful when one investigates
the sensitivity of the solution to small perturbations.

Although method (4) was firstly proposed by Ulm [10], it has been also considered by other
authors. For instance, Hald [1] showed the quadratic convergence of the method. Later, Zehn-
der [13] or Petzeltova [5] have studied the convergence of the method under Kantorovich-type
conditions.

An alternative to Kantorovich theory to study the convergence of iterative processes to solve
nonlinear equations is given by the known as Smale’s point estimate theory [8,9]. Roughly speak-
ing, if x0 is an initial value such that the sequence {xn} satisfies

‖xn − x∗‖�
(

1

2

)2n−1

‖x0 − x∗‖
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