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Abstract

We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an 
additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift 
grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided 
growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, 
our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of 
stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) 
sharp tail estimates for the (semi)flow and a Freidlin–Wentzell-type large deviation result.
© 2016 Elsevier Inc. All rights reserved.
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0. Introduction

T. Lyons’ theory of rough paths can be used to solve controlled ordinary differential equations 
(ODE) of the form
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dy = b(y) dt +
d∑

i=1

σi(y) dxi
t ; t ∈ [0, T ]

y0 = ξ ∈ R
m

(0.1)

for vector fields b, σ1, . . . , σd : Rm → R
m and non-differentiable, 1/p-Hölder continuous paths 

x : [0, T ] → R
d . However, one of Lyons’ key insights was that the equation (0.1) as it stands 

is ill-posed1 in the case of p ≥ 2. Instead, one has to enhance the path x : [0, T ] → R
d with 

additional information (which can be interpreted as its iterated integrals) to a path x taking values 
in a larger space. Defining a suitable (p-variation or Hölder-type) topology on this space of paths 
allows to solve the corresponding “lifted” equation

dy = b(y) dt + σ(y)dxt ; t ∈ [0, T ]
y0 = ξ ∈ R

m
(0.2)

uniquely in the way that the solution map (also called Itō–Lyons map) x �→ y is continuous. 
This paves way to a genuine pathwise stochastic calculus for a huge class of (not-necessarily 
martingale-type) driving signals (cf. e.g. [8, Chapters 13–20] and the references therein). Rough 
paths theory is now well-established, and since Lyons’ seminal article [16], several monographs 
have appeared (cf. [14,11,8,6]) which expose the theory and its various applications. Let us also 
briefly mention that rough paths ideas were used by M. Hairer to solve stochastic partial differ-
ential equations (SPDE) like the KPZ-equation (see [9]) and form an important part in his theory 
of regularity structures (cf. [10] and [6] where the link between rough paths and regularity struc-
tures is explained).

In the present work, we aim to solve (0.2) for a general, possibly unbounded drift term b
while we assume σ to be bounded and sufficiently smooth. In the literature about rough paths, 
a convenient way to take care of the drift part is to regard t �→ t as an additional (smooth) 
component of the rough path x, and b as another component of σ (cf. e.g. [6, Exercise 8.15]). 
However, this yields unnecessary smoothness assumptions, and allowing b to be unbounded 
leads to the study of general unbounded vector fields for rough differential equations (which is 
a delicate topic, cf. [12] for a discussion). Maybe more important, the bounds for the solution y
which are available in this case (cf. e.g. [8, Exercise 10.56]) are bounds which grow exponentially 
in the rough path norm of x, whereas bounded diffusion vector fields should yield polynomial 
bounds. The main theorems in the present paper (Theorem 3.1 and Theorem 4.3) provide exactly 
the bounds expected.

A rough differential equation can be seen as a special case of a non-autonomous ordinary 
differential equation. Therefore, it should not come as a big surprise that such equations naturally 
induce continuous two parameter flows2 on the state space Rm (at least if all vector fields are 
bounded, cf. [13], [8, Section 11.2], [6, Section 8.9]). Note that this immediately implies that a 
stochastic differential equation (SDE) induces a stochastic flow provided the driving process has 
sample paths in a rough paths space (which is the case, for instance, for a Brownian motion). 
In particular, the SDE is strongly complete which means that it can be solved globally on a set 

1 More precisely, Lyons showed that the map assigning to each smooth path x the solution y to the ordinary differential 
equation (0.1) is not closable in the space of p-variation or 1/p-Hölder continuous paths.

2 In fact, in [1], the flow is even the central object of interest and it is constructed directly, skipping the intermediate 
step of defining the solution to (0.2) for a fixed initial datum ξ first.
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