
Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations 262 (2017) 559–589

www.elsevier.com/locate/jde

Global existence and finite time blow-up of solutions 

of a Gierer–Meinhardt system ✩

Fang Li a, Rui Peng b,∗, Xianfa Song c

a Center for Partial Differential Equations, East China Normal University, 500 Dong Chuan Road, Minhang,
200241, Shanghai, China

b School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
c Department of Mathematics, School of Science, Tianjin University, 300072, Tianjin, China

Received 9 May 2016; revised 11 September 2016

Available online 30 September 2016

Abstract

We are concerned with the Gierer–Meinhardt system with zero Neumann boundary condition:

⎧⎪⎨
⎪⎩

ut = d1�u − a1u + up

vq + δ1(x), x ∈ �, t > 0,

vt = d2�v − a2v + ur

vs + δ2(x), x ∈ �, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �,

where p > 1, s > −1, q, r, d1, d2, a1, a2 are positive constants, δ1, δ2, u0, v0 are nonnegative smooth 
functions, � ⊂ R

d (d ≥ 1) is a bounded smooth domain. We obtain new sufficient conditions for global 
existence and finite time blow-up of solutions, especially in the critical exponent cases: p − 1 = r and 
qr = (p − 1)(s + 1).
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1. Introduction

In this paper, of our concern is the following general Gierer–Meinhardt system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d1�u − a1u + up

vq + δ1(x), x ∈ �, t > 0,

vt = d2�v − a2v + ur

vs + δ2(x), x ∈ �, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �,

(1.1)

where p > 1, s > −1, q, r, d1, d2, a1, a2 are positive constants, δ1, δ2, u0, v0 are nonnegative 
smooth functions, � ⊂R

d is a bounded domain with smooth boundary ∂� and the space dimen-
sion d ≥ 1, and ν is the unit outward norm vector on ∂�.

Following the idea of diffusion-driven instability proposed by Turing [42], Gierer and Mein-
hardt [13] in 1972 introduced the reaction–diffusion system (1.1) to model the pattern formation 
of spatial tissue structures of hydra in morphogenesis, a biological phenomenon which was dis-
covered by Trembley in 1744 [43]. It is noted that in the original Gierer–Meinhardt model, δ1
is a nonnegative constant and δ2 ≡ 0; the general Gierer–Meinhardt model (1.1) was proposed 
in [15].

The Gierer–Meinhardt system (1.1) is one of the most famous models in biological pattern for-
mation and belongs to the activator–inhibitor type. In the past few decades, the Gierer–Meinhardt 
system (1.1) has received extensive attention in research. The existence and uniqueness of a local 
solution to (1.1) is a folklore fact of standard parabolic theory; see, for example, [28], for de-
tails. Throughout the paper, a solution of (1.1) always means a classical nonnegative one. From 
the pure mathematical point of view, a fundamental question is the global existence of solution 
to (1.1). By a global solution of (1.1) we mean that its maximum existence time Tmax = ∞, 
and by a blow-up solution (u, v) we mean that its maximum existence time Tmax < ∞ and 
limt→T −

max
supx∈�(u(x, t) + v(x, t)) = ∞.

In the paper, unless otherwise stated, we assume that the initial data (u0, v0) satisfy

u0(x) ≥ 0, v0(x) > 0, ∀x ∈ �.

According to the strong maximum principle for parabolic equations, the solution (u, v) of (1.1)
satisfies v(x, t) > 0 for all x ∈ �, 0 < t < Tmax , and if either u0 ≥, 
≡ 0 or δ1 
≡ 0, then 
u(x, t) > 0 for all x ∈ �, 0 < t < Tmax .

The global existence and finite time blow-up of solution to the Gierer–Meinhardt system (1.1)
have been studied extensively, for instance, in [1,10,15,17,26–28,38,49–51]. In what follows, 
let us briefly recall the existing results in this regard. First, in the special case d ≤ 3, p = 2, 
r = 2, q = 1, s = 0 (so p − 1 < r and qr > (p − 1)(s + 1)), the global existence of solution 
of (1.1) with δ1 a nonnegative constant and δ2 ≡ 0 was established by Rothe [38] in 1984. Later 
in 1987, Masuda and Takahashi [28] improved the global existence result to the case p−1

r
< d

d+2 , 
qr > (p − 1)(s + 1) under the extra condition that δ1 is a positive constant and δ2 ≡ 0.

In [49], when δ1 is a nonnegative constant and δ2 ≡ 0, for any given p > 1, s > −1, q , r > 0, 
by constructing a pair of suitable super-subsolutions, Wu and Li proved that
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