Microprocessors and Microsystems 42 (2016) 127-141

Microprocessors and Microsystems

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

journal homepage: www.elsevier.com/locate/micpro

Protection of heterogeneous architectures on FPGAs: An approach
based on hardware firewalls

@ CrossMark

Pascal Cotret®*, Guy Gogniat®, Martha Johanna Sepilveda Florez"<

2 [ETR/SCEE, CentraleSupélec, Avenue de la Boulaie, CS 47601, F-35576 Cesson-Sévigné cedex, France
b 1ab-STICC Laboratory, University of South Brittany, Lorient, France
CInstitute for Security in Information Technology, Technical University of Munich, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 24 October 2014
Revised 20 June 2015

Accepted 20 January 2016
Available online 6 February 2016

Keywords:

Security

Hardware

MPSoC
Communications
FPGAs

Embedded systems

Embedded systems are parts of our daily life and used in many fields. They can be found in smart-
phones or in modern cars including GPS, light/rain sensors and other electronic assistance mechanisms.
These systems may handle sensitive data (such as credit card numbers, critical information about the
host system and so on) which must be protected against external attacks as these data may be transmit-
ted through a communication link where attackers can connect to extract sensitive information or inject
malicious code within the system. This work presents an approach to protect communications in multi-
processor architectures. This approach is based on hardware security enhancements acting as firewalls.
These firewalls filter all data going through the system communication bus and an additional flexible
cryptographic block aims to protect external memory from attacks. Benefits of our approach are demon-
strated using a case study and some custom software applications implemented in a Field-Programmable
Gate Array (FPGA). Firewalls implemented in the target architecture allow getting a low-latency security
layer with flexible cryptographic features. To illustrate the benefit of such a solution, implementations are
discussed for different MPSoCs implemented on Xilinx Virtex-6 FPGAs. Results demonstrate a reduction

up to 33% in terms of latency overhead compared to existing efforts.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For many years, embedded systems are used in our daily life:
we found them in electronic devices, automotive applications,
telecommunications systems and so on. When designing such sys-
tems, several issues have to be taken into account and one of
the major concerns is about security. Since the late 90s, security
has become a key point in the development of embedded sys-
tems [1]. The number of weaknesses is in constant progress and
electronic devices have to process data with various security re-
quirements. According to [2], security criteria are communications
security, storage security, inputs/outputs security and users au-
thentication. This work focuses on the two first criteria (commu-
nications and storage).

First of all, this work considers communication protection as
a key point in embedded systems development as communi-
cations channels convey several data types (application codes,

* Corresponding author. Tel.: +33 299844577.
E-mail addresses: pascal.cotret@centralesupelec.fr, pascal.cotret@supelec.fr
(P. Cotret), guy.gogniat@univ-ubs.fr (G. Gogniat), johanna.sepulveda@tum.de
(M.]. Septlveda Flérez).

http://dx.doi.org/10.1016/j.micpro.2016.01.013
0141-9331/© 2016 Elsevier B.V. All rights reserved.

confidential data, cryptographic elements and so on) with vari-
ous needs in terms of security: confidential data must not be re-
vealed to an unauthenticated user while application may be ac-
cessible through a specific interface (for instance, for development
purposes). Then, this work also takes care of data storage security:
memory elements are another critical entry point for attackers as
they potentially contain plaintext data.

This work is organized as follows. Section 2 presents related
works and our constraints regarding the architecture. Sections 3
and 4 describe our solution in a static and dynamic approach.
Section 5 gives an analysis in terms of security and provides im-
plementation results in comparison with other approaches.

2. Scientific context
2.1. Related works

Several studies dealing with security in embedded systems
have been published [1,2]. Security mechanisms can be imple-
mented in two ways: hardware blocks or software functions.
Software solutions are generally slower, in terms of latency,
than a pure hardware-implemented security solution. Furthermore


http://dx.doi.org/10.1016/j.micpro.2016.01.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.01.013&domain=pdf
mailto:pascal.cotret@centralesupelec.fr
mailto:pascal.cotret@supelec.fr
mailto:guy.gogniat@univ-ubs.fr
mailto:johanna.sepulveda@tum.de
http://dx.doi.org/10.1016/j.micpro.2016.01.013

128 P. Cotret et al./Microprocessors and Microsystems 42 (2016) 127-141

software solutions are generally more easily compromised than
hardware countermeasures. In this section, several works about
memory protection are presented. Then, regarding internal trans-
actions protection, an overview of the main solutions is proposed.

2.1.1. Memory protection approaches

In order to provide countermeasures against the threat model
defined in Section 2.2, a key point is to address memory pro-
tection. An obvious solution is to implement cryptographic fea-
tures for memory confidentiality and integrity. XOM [3] is a so-
lution mixing confidentiality and integrity for systems where the
external memory can be tampered. The implementation requires
adding hardware modules and modifying the processor structure.
Using such a solution, performances are quite spoiled as authors
[3] announce a 50% loss. AEGIS architecture [4] is another ap-
proach based on a security-enhanced processor embedding confi-
dentiality and integrity functions. Depending on processor config-
uration (cache size), memory slowdown is between 3.8% and 130%.
Bossuet et al. [5] made an in-depth comparison of existing crypto-
graphic processors where some of them, such as HCrypt, were im-
plemented on FPGAs. Some of these processors are efficient but do
not cover our threat model defined in a further section. In [6] au-
thors describe a solution (called SecSoft) to protect software with a
hardware Encryption Management Unit (EMU). This work proposes
a latency analysis of several modes (block/counter modes for en-
cryption function and with/without encryption). Latency overhead
on a ML301 platform goes from less than 10% (block mode, un-
encrypted) up to 80% (block mode, encrypted). This solution does
not provide mechanisms targeting integrity. Elbaz et al. [7] pro-
poses the PE-ICE solution to check integrity in parallel to encryp-
tion (i.e. confidentiality). The worst case implementation shows a
performance loss of 20% and for a confidentiality only implemen-
tation, a 4% loss is given. Vaslin et al. [8] proposes a confiden-
tiality and integrity hardware block based on AES for confidential-
ity and cyclic redundancy check for integrity, performance loss is
about 13-14%. In [9], authors extended this work by using the AES-
GCM algorithm (this option is also used in this work), integrity is
done by a low latency function [10]. Other methods such as hash
trees and formal verification [11,12] are used to protect memory
contents.

Another solution is to use the built-in MMU (Memory Manage-
ment Unit) available in some processors. This work is implemented
on a Xilinx FPGA where the softcore Microblaze is provided as a
general purpose processor. Microblaze MMU [13] provides a sim-
ple access control allowing to get read-only or full-access memory
pages in the system, this control can be disabled in a configuration
register.

All these works propose solutions to provide encryption meth-
ods for external memories protection with different performance
versus security tradeoff. In order to protect the target system from
attacks on the external memory, a trivial solution consists in build-
ing a fully-protected external memory unit. Unfortunately, in this
case, each memory access implies a ciphering/deciphering latency
penalty. Thus, such an approach is strongly penalizing regarding
the overall latency overhead of an application. To mitigate this
point, our work proposes to implement cryptographic features only
on specific memory pages, defined by application requirements,
avoiding such a systematic latency penalty. Therefore, some pages
are still not protected, that is the reason why internal traffic pro-
tection and/or monitoring must be also addressed in the context of
embedded systems security.

2.1.2. Bus and NoC-based security methods
Regarding large scale systems with NoC-based communication
architecture, Diguet et al. [14] proposes a solution where security

Untrusted

Trusted

Fig. 1. Fiorin's approach [15,17].

controls are done in each network interface in a distributed man-
ner. In this case, a security manager unit gathers individual inter-
faces information and performs countermeasures and security up-
dates (done through dynamic partial reconfiguration). This method
takes into account processor facing denial of service attacks but
does not offer ciphering function (however, authentication and in-
tegrity features are available). Fiorin et al. [15-17] propose an al-
ternative to this approach providing “security sensors” inside net-
work interfaces to refine controls (NI in Fig. 1). These sensors are
able to block incoming malicious data when parameters are not
proven. These parameters are stored in a trusted CAM (Context-
Addressable Memory). Finally, a SNM (Security Network Manager)
gathers information from NIs to detect potential collisions and er-
rors in data traffic. Unlike [14], security mechanisms can be up-
dated without partial reconfiguration of the FPGA chip, update is
done using memory rewriting. Refs. [14] and [15-17] do not offer
cryptographic features to cipher data transmitted in the communi-
cation network.

The solution proposed by Fiorin et al. is based on a secured Net-
work Interface (NI) with a DPU mechanism (Data Protection Unit,
see Fig. 1). This mechanism allows or not a transaction accord-
ing to parameters stored in individual trusted CAM memories. [15]
requirements aim to cover a threat model with denial of service
attacks but cannot protect systems against IP modifications per-
formed by an attacker. This distributed approach has a low-latency
and also presents some robustness. Controls are done in each inter-
face, even if one of them is corrupted, other interfaces should still
continue to work. Regarding NoC-based security solutions, we can
also cite [18,19]. Structure proposed by Sepulveda et al. is based on
a hierarchical NoC with low NoCs (each low NoC is a sub-network
having a single security policy) and a single high NoC acting as a
global security manager (connections with each low NoC). Regard-
ing NoC-based security, LeMay et al. [20] propose a mechanism to
detect abnormal behaviors in a NoC protocol when a malicious IP
is inserted in the system architecture: the solution based on AXI
signals has an area overhead up to 23%.

Then, for bus-based MPSoCs, the main contribution was pub-
lished by Coburn et al. [21]. This approach is similar to [15-17]
as it is based on security-enhanced network interfaces called SEI
(Security Enforcement Interface) but in a centralized approach. The
main drawback of this solution is that security information is sent
to a global security manager which is the only component able
to perform controls. Therefore, latency overhead is increased (see
Section 5). This solution does not offer security updates or crypto-
graphic features. Coburn et al. approach suggests to centralize all
the controls in a single module; therefore, as soon as this module
is corrupted, system security is compromised.

Compared to these efforts, our approach provides a distributed
solution with update mechanisms. We are able to dynamically
adapt the security policies based on the instantaneous threats. We



Download English Version:

https://daneshyari.com/en/article/460927

Download Persian Version:

https://daneshyari.com/article/460927

Daneshyari.com


https://daneshyari.com/en/article/460927
https://daneshyari.com/article/460927
https://daneshyari.com

