

Available online at www.sciencedirect.com

J. Differential Equations 261 (2016) 4789-4824

Journal of Differential Eauations

www.elsevier.com/locate/jde

Large time behavior of solutions for hyperbolic balance laws

Hongjun Yu

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China Received 8 March 2016

Available online 18 August 2016

Abstract

We study the existence and the large time behavior of global solutions to the initial value problem for hyperbolic balance laws in n space dimensions with n > 3 admitting an entropy and satisfying the stable condition. We first construct global existence of the solutions to such a system around a steady state if the initial energy is small enough. Then we show that k-order derivatives of these solutions approach a constant state in the L^p -norm at a rate $O(t^{-\frac{1}{2}(k+\rho+\frac{n}{2}-\frac{n}{p})})$ with $p \in [2,\infty]$ and $\rho \in [0,\frac{n}{2}]$ provided that initially $||z_0||_{\dot{B}_{2,\infty}^{-\rho}} < \infty$, where $\dot{B}_{2,\infty}^{-\rho}$ is a homogeneous Besov space. These decay results do not impose an additional smallness assumption on L^p norm of the initial data and we thus improve the results in [3,19]. We also show faster decay results in the sense that if $\|\mathbf{P}z_0\|_{\dot{B}_{2,\infty}^{-\rho}} + \|(\mathbf{I}-\mathbf{P})z_0\|_{\dot{B}_{2,\infty}^{-\rho+1}} < \infty$ with $\rho \in (\frac{n}{2}, \frac{n+2}{2}]$, k-order derivatives of the solutions approach a constant state in the L^p-norm at a rate $O(t^{-\frac{1}{2}(k+\rho+1+\frac{n}{2}-\frac{n}{p})}).$

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This work concerns the following N-component hyperbolic system of balance laws in n space dimensions:

E-mail address: yuhj2002@sina.com.

http://dx.doi.org/10.1016/j.jde.2016.07.016 0022-0396/© 2016 Elsevier Inc. All rights reserved.

$$w_t + \sum_{j=1}^n f^j(w)_{x_j} = g(w), \qquad (1.1)$$

with the initial conditions

$$w(0, x) = w_0(x), \tag{1.2}$$

where $t \ge 0$ and $x \in \mathbf{R}^n$ with $n \ge 3$, $w = w(t, x) \in \mathcal{O}_w \subset \mathbf{R}^N$ with $N \ge 1$ and \mathcal{O}_w is open and convex. Here $f^j(w)$ (j = 1, ..., n) and g(w) are given N-vector valued smooth functions of w from \mathcal{O}_w into \mathbf{R}^N . We define

$$\bar{\mathcal{N}} = \{ \psi \in \mathbf{R}^N; \psi^T g(w) = 0 \text{ for any } w \in \mathcal{O}_w \}.$$

Here the superscript T denotes the transpose. We set the dimension of $\overline{\mathcal{N}}$ to be N_1 with $1 \le N_1 \le N - 1$ and $\overline{\mathcal{N}}^{\perp}$ to be the orthogonal complement of $\overline{\mathcal{N}}$. Then we have $g(w) \in \overline{\mathcal{N}}^{\perp}$.

Such nonlinear systems typically govern non-equilibrium processes in physics for media with hyperbolic response as, for example, in gas dynamics. They also arise in the numerical simulation of conservation laws by relaxation schemes, see [1,3,4,8,12,37] and the references cited therein.

To obtain the existence of solutions to (1.1) and (1.2) the entropy condition is needed as in [9,10,18,37]. Here we first give the definition of entropy [18,19].

Definition 1.1. Let $\eta = \eta(w)$ be a smooth function defined in \mathcal{O}_w . Then $\eta(w)$ is called an entropy of balance laws (1.1) if the following four statements hold:

(a) $\eta(w)$ is strictly convex in \mathcal{O}_w in the sense that the Hessian $D_w^2 \eta(w)$ is positive definite for $w \in \mathcal{O}_w$.

(b) The matrix $D_w f^j(w) (D_w^2 \eta(w))^{-1}$ is symmetric for $w \in \mathcal{O}_w$ and j = 1, ..., n.

(c) Let $w \in \mathcal{O}_w$. Then g(w) = 0 holds if and only if $(D_w \eta(w))^T \in \overline{\mathcal{N}}$.

(d) For $w \in \mathcal{O}_w$ satisfying g(w) = 0, the matrix $D_w g(w) (D_w^2 \eta(w))^{-1}$ is symmetric and non-positive definite and its null space coincides with $\overline{\mathcal{N}}$.

Let $\eta = \eta(w)$ be defined as above and put $u(w) = (D_w \eta(w))^T$. It was shown in [18] that the mapping u = u(w) is a diffeomorphism from \mathcal{O}_w onto its range \mathcal{O}_u . Suppose that w = w(u) is the inverse mapping from \mathcal{O}_u onto \mathcal{O}_w . Putting w = w(u) in (1.1) we have

$$\bar{A}^{0}(u)u_{t} + \sum_{j=1}^{n} \bar{A}^{j}(u)u_{x_{j}} = H(u).$$
(1.3)

Here

$$A^{0}(u) := D_{u}w(u), \quad H(u) := g(w(u)), \tag{1.4}$$

$$\bar{A}^{j}(u) := D_{u} f_{j}(w(u)) = D_{w} f^{j}(w(u)) D_{u} w(u).$$
(1.5)

In addition we see that $H(u) \in \overline{\mathcal{N}}^{\perp}$ for any $u \in \mathcal{O}_u$. Let us define

$$L(u) := -D_u H(u) = -(D_w g)(w(u))D_u w(u).$$
(1.6)

Download English Version:

https://daneshyari.com/en/article/4609272

Download Persian Version:

https://daneshyari.com/article/4609272

Daneshyari.com