
Microprocessors and Microsystems 42 (2016) 142–155

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Combining the parabolic synthesis methodology with second-degree

interpolation

Erik Hertz

a , ∗, Bertil Svensson

a , 1 , Peter Nilsson

b , 2

a Centre for Research on Embedded Systems, Halmstad University, Halmstad, Sweden
b Electrical and Information Technology Department, Lund University, Lund, Sweden

a r t i c l e i n f o

Article history:

Received 26 June 2015

Accepted 26 January 2016

Available online 26 February 2016

Keywords:

Approximation

Parabolic synthesis

Unary functions

Elementary functions

Second-degree interpolation

Arithmetic computation

CORDIC

VLSI

Look-up table

a b s t r a c t

The Parabolic Synthesis methodology is an approximation methodology for implementing unary func-

tions, such as trigonometric functions, logarithms and square root, as well as binary functions, such as

division, in hardware. Unary functions are extensively used in baseband for wireless/wireline communi-

cation, computer graphics, digital signal processing, robotics, astrophysics, fluid physics, games and many

other areas. For high-speed applications, as well as in low-power systems, software solutions are not suf-

ficient and a hardware implementation is therefore needed. The Parabolic Synthesis methodology is a way

to implement functions in hardware based on low complexity operations that are simple to implement in

hardware. A difference in the Parabolic Synthesis methodology compared to many other approximation

methodologies is that it is a multiplicative, in contrast to additive, methodology. To further improve the

performance of Parabolic Synthesis based designs, the methodology is combined with Second-Degree

Interpolation. The paper shows that the methodology provides a significant reduction in chip area,

computation delay and power consumption with preserved characteristics of the error. To evaluate this,

the logarithmic function was implemented, as an example, using the Parabolic Synthesis methodology

in comparison to the Parabolic Synthesis methodology combined with Second-Degree Interpolation. To

further demonstrate the feasibility of both methodologies, they have been compared with the CORDIC

methodology. The comparison is made on the implementation of the fractional part of the logarithmic

function with a 15-bit resolution. The designs implemented using the Parabolic Synthesis methodology

– with and without the Second-Degree Interpolation – perform 4x and 8x better, respectively, than

the CORDIC implementation in terms of throughput. In terms of energy consumption, the CORDIC

implementation consumes 140% and 800% more energy, respectively. The chip area is also smaller in the

case when the Parabolic Synthesis methodology combined with Second-Degree Interpolation is used.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computation of elementary functions is legio in a multitude of

applications, such as digital signal processing (DSP), control ap-

plications, 2D and 3D computer graphics, computer aided design

(CAD), virtual reality and physical simulation. The accuracy of the

functions is of course important. Software routines can be designed

to provide extremely accurate results, but software is often too

slow for numerically intensive and real-time applications. There

is therefore a significant interest in hardware implementations of

function generators.

∗ Corresponding author. Tel.: +46 702890215; fax: +46 35120348.

E-mail addresses: erik.hertz@hh.se (E. Hertz), bertil.svensson@hh.se (B. Svens-

son), Peter.Nilsson@eit.lth.se (P. Nilsson).
1 Tel.: +46 706480843; fax: +46 35120348
2 Tel.: +46 705770565; fax: +46 46129948

Hardware computation of elementary functions can be per-

formed by employing many different algorithms [1,2] , such

as table-based methods, polynomial and rational approximation

methods, and functional iteration methods.

Table-based methods remain manageable for low precision

computation when the input operand is up to 12–16 bits, cor-

responding to table sizes of 4–64 K words. The size of the table

grows exponentially with the addressing length and becomes un-

acceptably large when operating with higher precision. An alter-

native way of making approximations is based on polynomials.

Since polynomials involve only additions, subtractions and multi-

plications, using them is a natural way to approximate elementary

functions. A number of schemes are available for polynomial ap-

proximations, such as Taylor, Maclaurin, Legendre, Chebyshev, Ja-

cobi and Laguerre [1] . For a given precision, the chosen polynomial

scheme affects the number of terms included, and thus the com-

putational complexity. Two development strategies are available in

http://dx.doi.org/10.1016/j.micpro.2016.01.015

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.01.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.01.015&domain=pdf
mailto:erik.hertz@hh.se
mailto:bertil.svensson@hh.se
mailto:Peter.Nilsson@eit.lth.se
http://dx.doi.org/10.1016/j.micpro.2016.01.015

E. Hertz et al. / Microprocessors and Microsystems 42 (2016) 142–155 143

developing an approximation, one to minimize the average error,

called least squares approximation, and one to minimize the worst

case error, called least maximum approximation [1] . An example of

when least squares approximation is favorable is when the approx-

imation is used in a series of computations. On the other hand,

least maximum approximation is favorable when it is important

that the maximum error to the function to be approximated is kept

small. An example of when least maximum approximation is favor-

able is when the error from the approximation has to be within

a limit from the true function value. An advantage of polynomi-

als is that they are table-less, but their drawback is that they im-

pose large computational complexities and delays [1] . A reduction

in computational complexity can be accomplished by combining

table-based methods with polynomial based methods, and the de-

lays can also, to some extent, be decreased [1] .

For implementation of elementary functions in hardware, the

sum of bit-products methodology [3] can be beneficial, since it can

give an area efficient implementation with a high throughput at a

reasonable accuracy.

The commonly used COordinate Rotation DIgital Computer

(CORDIC) algorithm [4,5] is an iterative algorithm. The benefit of

the algorithm is that the hardware for the basic elementary func-

tions requires only a small look-up table, simple shifts and addi-

tions. The CORDIC algorithm is used in applications where aspects

such as high speed, low power and low area have to be considered.

However, since it is an iterative method, it is inherently somewhat

slow and therefore often insufficient for very high performance ap-

plications. The Parabolic Synthesis methodology [6–9] has a paral-

lel architecture, which significantly reduces the propagation delay

and thus provides an advantage over the serial CORDIC algorithm.

The reduction in propagation delay also allows a lower clock fre-

quencies and thereby a significant reduction in power consump-

tion.

To further reduce chip area, critical path delay and power con-

sumption, an extension of the Parabolic Synthesis methodology has

been developed, which is described in this paper. The extension is

achieved by combining Parabolic Synthesis with Second-Degree In-

terpolation [2,10,11] . In contrast to the Parabolic Synthesis method-

ology, which is a synthesis of second-order functions and thus pro-

vides an accuracy that depends on the number of second-order

functions, the accuracy of the combined methodology depends on

the number of intervals in the Second-Degree Interpolation part.

The architecture of the Parabolic Synthesis methodology is charac-

terized by a high degree of parallelism, which ensures low execu-

tion times. Like the Parabolic Synthesis methodology, the Parabolic

Synthesis methodology combined with Second-Degree Interpola-

tion utilizes only low complexity operations, again ensuring simple

implementation in hardware. The extension admits that the char-

acteristics can to a great extent be tailored. This enables making

a rough internal error compensation of the approximation, which

improves the distribution of the error.

The feasibility of the Parabolic Synthesis methodology has been

verified for implementation on a vast range of unary functions, as

shown in [8] . The extended methodology described in this paper

has the same broad applicability.

The remaining part of this paper is organized as follows:

Section 2 describes the Parabolic Synthesis methodology; Section 3

describes the Parabolic Synthesis Combined with Second-Degree

Interpolation; Section 4 describes the general structure of the

hardware architecture of both methodologies; Section 5 proposes

a general optimization strategy for both methodologies, using the

sine function as an illustrative example; Section 6 describes tools

for characterization of the error when approximations are made;

Section 7 presents the implementation of the logarithm func-

tion in both Parabolic Synthesis and Parabolic Synthesis Com-

bined with Second-Degree Interpolation; Section 8 gives a compar-

ison of implementations performed in the different approximation

methodologies, CORDIC, Parabolic Synthesis and Parabolic Synthe-

sis Combined with Second-Degree Interpolation, where the com-

parison is made with respect to chip area, critical path delay

and power consumption; and Section 9 closes the paper with

conclusions.

2. Parabolic synthesis

The Parabolic Synthesis methodology [6–9] is an approximation

methodology for implementing unary functions, such as trigono-

metric functions, logarithms and the square root, as well as bi-

nary functions, such as division, in hardware. The methodology

is mainly intended for use in computation intensive applications

such as computer graphics, digital signal processing, communica-

tion systems, robotics, astrophysics and fluid physics.

The methodology is founded on multiplications of sub-

functions, s n (x), n = 1,2 , . . . , each sub-function being a second-

order parabolic function. When multiplying these sub-functions, as

shown in (1), the original function, f org (x), is obtained. Note that,

in the Parabolic Synthesis methodology, the function is based on

multiplication of factors, unlike most other methodologies that are

based on summation of terms. This is the key to the possibility

to parallelize the architecture. Note that f org (x) is almost always

a transformation of the function to be approximated, to satisfy

the Parabolic Synthesis methodology. The accuracy of an approx-

imation with this methodology depends on the number of sub-

functions used.

f org (x) = s 1 (x) · s 2 (x) · · · · · s ∞

(x) (1)

Using infinitely many factors in (1) will recreate f org (x). The

procedure for obtaining sub-functions is to develop help functions

from which sub-functions are developed. To compute the first help

function, f 1 (x), the ratio function between the original function,

f org (x), and the first sub-function, s 1 (x) is computed. This division

generates the first help function, f 1 (x), as shown in (2).

f 1 (x) =

f org (x)

s 1 (x)
= s 2 (x) · s 3 (x) · · · · · s ∞

(x) (2)

The following help functions, f n (x), are generated in the same

manner, as shown in (3).

f n (x) =

f n −1 (x)

s n (x)
= s n +1 (x) · s n +2 (x) · · · · · s ∞

(x) (3)

2.1. First sub-function

To facilitate the development of the first sub-function, s 1 (x), the

original function, f org (x), must cut the function x in (0,0) and (1,1)

as shown in Fig. 1.

Thus, the function to be approximated has to be normalized

and must satisfy the requirement that the values are in the inter-

val 0 ≤ x < 1 on the x -axis and 0 ≤ y < 1 on the y -axis and have

the starting point in (0,0). The normalization of the function to be

approximated creates the original function, f org (x).

To satisfy the demands of the methodology, the original func-

tion, f org (x), must fulfill three additional criteria.

1. It must be strictly concave or convex through the interval in

which it is approximated. The original function, f org (x), has to

be strictly concave or convex through the interval since the ap-

proximation used is a second-order parabolic function.

2. The original function, f org (x), after it is divided by the first sub-

function, s 1 (x), must have a limit value when x goes towards 0 .

If the function has no limit value, it implies that a help func-

tion, f 1 (x), is not defined when x = 0.

Download English Version:

https://daneshyari.com/en/article/460928

Download Persian Version:

https://daneshyari.com/article/460928

Daneshyari.com

https://daneshyari.com/en/article/460928
https://daneshyari.com/article/460928
https://daneshyari.com

