
Microprocessors and Microsystems 42 (2016) 165–179 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Pipelining data-dependent tasks in FPGA-based multicore architectures 

Ali Azarian 

∗, João M.P. Cardoso 

Faculty of Engineering, University of Porto and INESC-TEC, Rua Dr. Roberto Frias, Porto, Portugal 

a r t i c l e i n f o 

Article history: 

Received 15 May 2015 

Revised 5 October 2015 

Accepted 8 February 2016 

Available online 15 February 2016 

Keywords: 

Multicore architectures 

Task-level pipelining 

FPGA 

Producer/consumer data communication 

a b s t r a c t 

In recent years, there has been increasing interest in using task-level pipelining to accelerate the overall 

execution of applications mainly consisting of producer/consumer tasks. This paper proposes fine- and 

coarse-grained data synchronization approaches to achieve pipelining execution of producer/consumer 

tasks in FPGA-based multicore architectures. Our approaches are able to speedup the overall execution of 

successive, data-dependent tasks, by using multiple cores and specific customization features provided by 

FPGAs. An important component of our approach is the use of customized inter-stage buffer schemes to 

communicate data and to synchronize the cores associated with the producer/consumer tasks. We pro- 

pose techniques to reduce the number of accesses to external memory in our fine-grained data synchro- 

nization approach. The experimental results show the feasibility of the approach in both in-order and 

out-of-order producer/consumer tasks. Moreover, the results using our approach reveal noticeable per- 

formance improvements for a number of benchmarks over a single core implementation without using 

task-level pipelining. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Techniques to speedup processing are becoming more and more 

important. Task-level pipelining (TaLP) is an important technique 

for multicore based systems, especially when dealing with appli- 

cations consisting of producer/consumer (P/C) tasks (see, e.g., [1] ). 

It may provide additional speedups over the ones achieved when 

exploring other forms of parallelism. In the presence of multicore 

based systems, TaLP can be achieved by mapping each task to a 

distinct core and by synchronizing their execution according to 

data availability. It can accelerate the overall execution of appli- 

cations by partially overlapping the execution of data-dependent 

tasks (herein: Computing Stages). 

Many applications, such as image/video and signal processing, 

are structured as a sequence of data-dependent computing stages, 

use the P/C pair communication paradigm, and are thus amenable 

to pipelining execution [2,3] . Using TaLP, a consumer computing 

stage (e.g., consisting of a loop or a set of nested loops) may start 

execution, before the end of the producer computing stage, based 

on data availability. Performance gains can be achieved as the con- 

sumer can process data as soon as it becomes available. 

There are two types of data synchronization granular- 

ity between the producer and consumer: Fine-grained and 

Coarse-grained . In fine-grained schemes, each data element is used 

∗ Corresponding author. Tel.: +351962868369. 

E-mail addresses: azarian@fe.up.pt , azarian.ali@gmail.com , pro10 0 02@fe.up.pt 

(A. Azarian), jmpc@acm.org (J. M.P. Cardoso). 

to synchronize computing stages. In coarse-grained data synchro- 

nization schemes, instead of each data element, chunks of ele- 

ments or an entire array of elements (e.g., an image) is considered 

to synchronize computing stages. 

The simplest implementation of TaLP uses a FIFO channel be- 

tween cores implementing P/C pairs. The FIFO can store an array 

element or a set of array elements to establish data synchroniza- 

tion between the producer and consumer. FIFO is sufficient when 

the order of producing data is the same as the order of consuming 

data (referred herein as in-order data communication pattern or 

simply in-order). In this case, the data communication between the 

producer and consumer can use a FIFO storing one data element in 

each stage. Although using FIFO channels between producers and 

consumers is an efficient solution for in-order P/C pairs, it may not 

be efficient or feasible for out-of-order P/C pairs and it might be 

necessary to use other data communication mechanisms [4] . 

In the presence of out-of-order P/C pairs, recent approaches ad- 

dress software-based TaLP (see e.g., [4,5] and [6] ) . In those ap- 

proaches, an extra storage and buffer memory are introduced, 

based on the order of the communication pattern between the 

producer and consumer, determined at compile time [4] . The data 

communication in these studies uses unbounded FIFOs which may 

prevent them to be used in a number of implementations. In ad- 

dition, they use memory access reordering techniques. One of the 

approaches for TaLP including support for out-of-order P/C pairs 

has been introduced in [5] in the context of application specific 

architectures and using a fine-grained execution of data-dependent 

tasks. 

http://dx.doi.org/10.1016/j.micpro.2016.02.008 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.02.008&domain=pdf
mailto:azarian@fe.up.pt
mailto:azarian.ali@gmail.com
mailto:pro10002@fe.up.pt
mailto:jmpc@acm.org
http://dx.doi.org/10.1016/j.micpro.2016.02.008


166 A. Azarian, J. M.P. Cardoso / Microprocessors and Microsystems 42 (2016) 165–179 

Fig. 1. Fine-grained data synchronization scheme using a FIFO between P/C pairs. 

Although approaches to pipeline sequences of data-dependent 

loops have been addressed previously (e.g., [6–8] ), the work pre- 

sented here is novel in three main aspects. First, we use a fine- 

grained and coarse-grained data-driven synchronization schemes 

between P/C stages of the pipeline. The implementation uses a 

hash-based scheme to limit local buffer size. Other techniques have 

focused on finding appropriate sized synchronization buffers [2] to 

enforce the same P/C order thus sacrificing concurrency. Our fine- 

and coarse-grained synchronization schemes are similar in spirit 

to the empty/full tagged memory scheme used in the context of 

shared memory multiprocessor architectures (see, [9,10] ). Second, 

the control scheme decouples the control units of each stage and 

uses inter-stage buffers (ISB) to signal the availability of data ele- 

ments to the subsequent stage. This approach allows out-of-order 

execution of loop iterations between tasks only constrained by 

data dependencies. The overall benefit of these features is that we 

are able to achieve almost the theoretical speedup and to reduce 

the size of the buffers to communicate data between computing 

stages. Lastly, we describe the application of this technique in the 

context of configurable multicore architectures showing how TaLP 

can be applied to multicore architectures and the impact on the 

results of different customized inter-stage buffers. 

This paper makes the following specific contributions: 

• Presents a technique for pipelining the execution of sequences 

of data-dependent loops using fine- and coarse-grained syn- 

chronization. 

• Presents customized multicore architectures for the inter-stage 

communication to achieve pipelining execution of P/C pairs. 

• Presents a technique to predict the presence of data previously 

produced in external memory and thus reduce external mem- 

ory accesses. 

The remainder of this paper is organized as follows. In 

Section 2 , we describe TaLP. Section 3 presents our approach 

including fine-grained and coarse-grained data synchronization 

schemes. Section 4 presents optimization techniques for our ap- 

proach. Section 5 presents experimental results. We include an 

overview over related work in Section 6 . A discussion about our 

techniques and their impact is presented in Section 7 . Finally, 

Section 8 concludes the paper. 

2. Task-level pipelining (TaLP) 

To pipeline computing stages, the producer and consumer can 

be implemented in a multicore architecture as shown in Fig. 1 . In 

this scheme, computing stages are split into cores; e.g., one core 

as a producer and the other core as a consumer. For the main 

memory, the architecture can use a shared-memory or distributed 

memory. Each computing stage can be a producer for the next 

stage, a consumer of the previous stage or both [11] . In this case, 

we split the producers and consumers in cores by considering the 

dependencies between the stages. In Fig. 1 , we consider only one 

P/C pair for simplicity. 

The communication component between P/C pairs can be a 

simple FIFO. Reading and writing from/to the FIFO are blocked. 

When the FIFO is full, the producer waits to write into the FIFO. 

Similarly, when the FIFO is empty, the consumer waits until a data 

element is written to the FIFO. In this scheme, the producer sends 

data elements into the FIFO and the consumer reads data from the 

FIFO as soon as it is available. The bottleneck of the communica- 

tion over FIFO channels is that if the order of consumption is dif- 

ferent from the order of the produced data (i.e., when in presence 

of out-of-order data communication), the producer and the con- 

sumer stall and a deadlock can be expected. 

Fig. 2 presents the kernel of a Gray-Histogram code which con- 

sists of two computing stages. The first stage transforms an RGB 

image to a gray image with 256 levels and stores the output into 

an array. The second stage reads the gray image and determines 

its histogram. These two stages can be split into producer and con- 

sumer. The producer transforms the input image from RGB to gray 

and the consumer computes the histogram of the gray image. This 

kernel has an in-order communication pattern between the pro- 

ducer and consumer. In this case, a simple FIFO can be used to 

communicate data between the two stages and to achieve the fine- 

grained synchronization between P/C pairs. In this model, the one- 

dimensional FIFO channel is being accessed by means of a blocking 

Fig. 2. Example of a simple producer/consumer pair using a FIFO channel. 



Download English Version:

https://daneshyari.com/en/article/460930

Download Persian Version:

https://daneshyari.com/article/460930

Daneshyari.com

https://daneshyari.com/en/article/460930
https://daneshyari.com/article/460930
https://daneshyari.com

