Periodic-parabolic eigenvalue problems with a large parameter and degeneration

Daniel Daners *, Christopher Thornett ${ }^{1}$
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received 10 September 2015; revised 4 March 2016

Abstract

We consider a periodic-parabolic eigenvalue problem with a non-negative potential λm vanishing on a non-cylindrical domain D_{m} satisfying conditions similar to those for the parabolic maximum principle. We show that the limit as $\lambda \rightarrow \infty$ leads to a periodic-parabolic problem on D_{m} having a periodic-parabolic principal eigenvalue and eigenfunction which are unique in some sense. We substantially improve a result from [Du and Peng, Trans. Amer. Math. Soc. 364 (2012), p. 6039-6070]. At the same time we offer a different approach based on a periodic-parabolic initial boundary value problem. The results are motivated by an analysis of the asymptotic behaviour of positive solutions to semilinear logistic periodic-parabolic problems with temporal and spacial degeneracies.

© 2016 Elsevier Inc. All rights reserved.

MSC: 35K20; 35P15; 35B10

Keywords: Non-autonomous parabolic initial-boundary value problem; Periodic-parabolic eigenvalue problem; Limit problems for a large parameter; Spatial and temporal degeneration

[^0]
1. Introduction

We consider a periodic-parabolic eigenvalue problem arising in the study of the asymptotic behaviour of positive solutions to a T-periodic logistic type population problem such as first studied in [27,7] and later in [2,3,21,22,24,33]. The limiting behaviour of the eigenvalue problem allows to deduce information about the corresponding logistic-type semilinear problem. Our focus is in on the case of temporal and spacial degeneracies motivated in particular in [22].

More precisely, we are interested in the behaviour of the principal eigenvalue for the periodicparabolic eigenvalue problem

$$
\begin{align*}
\frac{\partial u}{\partial t}+\mathcal{A}(t) u+\lambda m(x, t) u & =\mu(\lambda) u & & \text { in } \Omega \times(0, T), \\
\mathcal{B}(t) u & =0 & & \text { in } \partial \Omega \times(0, T), \\
u(x, 0) & =u(x, T) & & \text { in } \Omega, \tag{1.1}
\end{align*}
$$

as $\lambda \rightarrow \infty$, where $m \in L^{\infty}(\Omega \times(0, T))$ is a non-negative weight function that has a non-trivial zero set satisfying suitable assumptions. Moreover, $\Omega \subseteq \mathbb{R}^{N}$ is a bounded domain, and

$$
\begin{equation*}
\mathcal{A}(t) u:=-\operatorname{div}(D(x, t) \nabla u+a(x, t) u)+\left(b(x, t) \cdot \nabla u+c_{0}(x, t) u\right) \tag{1.2}
\end{equation*}
$$

is a uniformly strongly elliptic operator with bounded and measurable coefficients and $\mathcal{B}(t)$ a boundary operator of Dirichlet, Neumann or Robin type (for precise assumptions see Section 2).

As in [27], a principal eigenvalue of (1.1) is an eigenvalue having a positive eigenvector. If $m(x, t)>0$ on $\Omega \times(0, T)$ nothing interesting happens, so we focus on the case where $m(x, t)=0$ in some region $D_{m} \subseteq \Omega \times[0, T]$ of non-zero measure. Such problems have been looked at in particular for the corresponding elliptic problem in [2,10,33]. The most general weights m are considered in [1,22,23,34,35], where spacial and temporal degeneration is allowed. Our aim is to simplify and generalise some of these results using an alternative method and allowing fully non-autonomous operators $(\mathcal{A}(t), \mathcal{B}(t))$ including the principal part.

The approach we take is quite different from previous work and related to the one used in [17] for elliptic systems. Rather than studying the eigenvalue problem (1.1) directly we study what happens to the solution to

$$
\begin{align*}
\frac{\partial u}{\partial t}+\mathcal{A}(t) u+\lambda m(x, t) u & =0 & & \text { in } \Omega \times(s, T), \\
\mathcal{B}(t) u & =0 & & \text { in } \partial \Omega \times(s, T), \\
u(x, s) & =u_{s}(x) & & \text { in } \Omega, \tag{1.3}
\end{align*}
$$

as $\lambda \rightarrow \infty$, where $s \in[0, T)$. We consider the behaviour of weak solutions of (1.3) with a nonzero right hand side as $\lambda \rightarrow \infty$ in Section 2. In Section 3 we show that for every initial value $u_{0} \in L^{p}(\Omega)$ the problem (1.3) has a unique solution $u \in C\left([s, T], L^{p}(\Omega)\right)$. This in particular allows us to define the evolution operator $U_{\lambda}(t, s)$ by

$$
\begin{equation*}
U_{\lambda}(t, s) u_{s}:=u(t) \tag{1.4}
\end{equation*}
$$

https://daneshyari.com/en/article/4609301

Download Persian Version:

https://daneshyari.com/article/4609301

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: daniel.daners@ sydney.edu.au (D. Daners), thornett@cims.nyu.edu (C. Thornett).
 ${ }^{1}$ Current address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.

