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Abstract

We consider a periodic-parabolic eigenvalue problem with a non-negative potential λm vanishing on a 
non-cylindrical domain Dm satisfying conditions similar to those for the parabolic maximum principle. We 
show that the limit as λ → ∞ leads to a periodic-parabolic problem on Dm having a periodic-parabolic 
principal eigenvalue and eigenfunction which are unique in some sense. We substantially improve a result 
from [Du and Peng, Trans. Amer. Math. Soc. 364 (2012), p. 6039–6070]. At the same time we offer a 
different approach based on a periodic-parabolic initial boundary value problem. The results are motivated 
by an analysis of the asymptotic behaviour of positive solutions to semilinear logistic periodic-parabolic 
problems with temporal and spacial degeneracies.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

We consider a periodic-parabolic eigenvalue problem arising in the study of the asymptotic 
behaviour of positive solutions to a T -periodic logistic type population problem such as first 
studied in [27,7] and later in [2,3,21,22,24,33]. The limiting behaviour of the eigenvalue prob-
lem allows to deduce information about the corresponding logistic-type semilinear problem. Our 
focus is in on the case of temporal and spacial degeneracies motivated in particular in [22].

More precisely, we are interested in the behaviour of the principal eigenvalue for the periodic-
parabolic eigenvalue problem

∂u

∂t
+A(t)u + λm(x, t)u = μ(λ)u in � × (0, T ),

B(t)u = 0 in ∂� × (0, T ),

u(x,0) = u(x,T ) in �, (1.1)

as λ → ∞, where m ∈ L∞(
� × (0, T )

)
is a non-negative weight function that has a non-trivial 

zero set satisfying suitable assumptions. Moreover, � ⊆R
N is a bounded domain, and

A(t)u := −div
(
D(x, t)∇u + a(x, t)u

) + (
b(x, t) · ∇u + c0(x, t)u

)
(1.2)

is a uniformly strongly elliptic operator with bounded and measurable coefficients and B(t) a 
boundary operator of Dirichlet, Neumann or Robin type (for precise assumptions see Section 2).

As in [27], a principal eigenvalue of (1.1) is an eigenvalue having a positive eigenvector. If 
m(x, t) > 0 on � ×(0, T ) nothing interesting happens, so we focus on the case where m(x, t) = 0
in some region Dm ⊆ � × [0, T ] of non-zero measure. Such problems have been looked at in 
particular for the corresponding elliptic problem in [2,10,33]. The most general weights m are 
considered in [1,22,23,34,35], where spacial and temporal degeneration is allowed. Our aim is 
to simplify and generalise some of these results using an alternative method and allowing fully 
non-autonomous operators (A(t), B(t)) including the principal part.

The approach we take is quite different from previous work and related to the one used in [17]
for elliptic systems. Rather than studying the eigenvalue problem (1.1) directly we study what 
happens to the solution to

∂u

∂t
+A(t)u + λm(x, t)u = 0 in � × (s, T ),

B(t)u = 0 in ∂� × (s, T ),

u(x, s) = us(x) in �, (1.3)

as λ → ∞, where s ∈ [0, T ). We consider the behaviour of weak solutions of (1.3) with a non-
zero right hand side as λ → ∞ in Section 2. In Section 3 we show that for every initial value 
u0 ∈ Lp(�) the problem (1.3) has a unique solution u ∈ C([s, T ], Lp(�)). This in particular 
allows us to define the evolution operator Uλ(t, s) by

Uλ(t, s)us := u(t). (1.4)
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