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Abstract

We consider a fitness-driven model of dispersal of N interacting populations, which was previously stud-
ied merely in the case N = 1. Based on some optimal transport distance recently introduced, we identify the 
model as a gradient flow in the metric space of Radon measures. We prove existence of global non-negative 
weak solutions to the corresponding system of parabolic PDEs, which involves degenerate cross-diffusion. 
Under some additional hypotheses and using a new multicomponent Poincaré–Beckner functional inequal-
ity, we show that the solutions converge exponentially to an ideal free distribution in the long time regime.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Living organisms tend to form distributional patterns but not to be arranged either uniformly or 
randomly. This spatial heterogeneity plays a crucial role in ecological theories and their practical 
applications. It should be taken into account when modeling epidemics, ecological catastro-
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phes, competition, adaptation, maintenance of species diversity, parasitism, population growth 
and decline, social behavior, and so on [1]. In order to understand the way the species distribute 
themselves it is important to pay attention to their dispersal strategies.

In this paper we study a system of PDEs for several interacting populations whose dispersal 
strategy is determined by a local intrinsic characteristic of organisms called fitness (cf. [2,3]), 
essentially the signed difference between available resources and their consumption by the in-
dividuals. The fitness manifests itself as a growth rate, and simultaneously affects the dispersal 
as the species move along its gradient towards the most favorable environment. The equilibrium 
when the fitnesses of all populations vanish can be referred to as the ideal free distribution [4,5], 
since no net movement of individuals occurs in this case. We are thus going to study the system

∂tui = −div(ui∇fi) + uifi, x ∈ �, t > 0, i = 1, . . . ,N, (1.1)

of N interacting species located in a bounded domain � ⊂ R
d . For prescribed resources m =

(mi(x)) we assume a generic linear relation between the population densities u = (ui(t, x)) and 
their corresponding fitnesses f = (fi(t, x)):

f = m − Au. (1.2)

We assume that both the matrix A and the vector m depend on x ∈ �, thus our model is spatially 
heterogeneous. Formula (1.2) expresses the idea that the fitness is determined by the difference 
between the available resources m and the animals’ consumption Au.

Our results can be generalized to the case when (1.1) is replaced by

∂tui = −bi div(ui∇fi) + ciuifi, x ∈ �, t > 0, i = 1, . . . ,N,

where the coefficients bi and ci are positive numbers. However, to fix the ideas and avoid unnec-
essary technicalities, hereafter we study only (1.1), (1.2).

The mathematical difficulties which we will face when studying the parabolic system 
(1.1)–(1.2) come from the fact that it involves both cross-diffusion (for N > 1) and degenerate 
diffusion. In the case of merely one population (N = 1), the fitness-driven dispersal model (1.1), 
(1.2) was suggested in [6,2] and studied in [7,8] (see also [9]). Related fitness-driven two-species 
models were investigated in [10,11] where one population uses the fitness-driven dispersal strat-
egy and the other diffuses freely or does not move at all. In the case when A is a constant matrix, 
m ≡ 0, and the second (reaction) term uifi in (1.1) is omitted, system (1.1), (1.2) is equivalent 
to the degenerate cross diffusion system which was recently analyzed in [12] with an application 
to seawater intrusion. Another population dynamics model which involves cross-diffusion is the 
Shigesada, Kawasaki and Teramoto model

∂tui = �

(
ui

(
di +

N∑
i=1

aijuj

))
+ ui

((
ci −

N∑
i=1

bijuj

))
, i = 1, . . . ,N, (1.3)

where the coefficients are non-negative constants. It has been extensively studied (mostly for 
N = 2) from the point of view of well-posedness and long-time behavior (see, e.g., [13–18]
and the references therein). Note that the constants di in (1.3) are usually assumed to be strictly 
positive, hence this problem is not as degenerate as our system (1.1), (1.2).
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