Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem *

Qiang Xu
Department of Mathematics, Lanzhou University, Lanzhou 730000, PR China

Received 22 July 2015; revised 18 April 2016
Available online 21 July 2016

Abstract

In this paper, we mainly employed the idea of the previous paper [34] to study the sharp uniform $W^{1, p}$ estimates with $1<p \leq \infty$ for more general elliptic systems with the Neumann boundary condition on a bounded $C^{1, \eta}$ domain, arising in homogenization theory. Based on the skills developed by Z. Shen in [27] and by T. Suslina in [31,32], we also established the L^{2} convergence rates on a bounded $C^{1,1}$ domain and a Lipschitz domain, respectively. Here we found a "rough" version of the first order correctors (see (1.12)), which can unify the proof in [27] and [32]. It allows us to skip the corresponding convergence results on \mathbb{R}^{d} that are the preconditions in [31,32]. Our results can be regarded as an extension of [23] developed by C. Kenig, F. Lin, Z. Shen, as well as of [32] investigated by T. Suslina. © 2016 Elsevier Inc. All rights reserved.

Keywords: Elliptic systems; Homogenization; Uniform regularity estimates; Neumann boundary problem; Convergence rates

1. Introduction and main results

M. Avellaneda and F. Lin developed the compactness methods in [3,4] to study uniform regularity estimates for Dirichlet problems in homogenization theory in the end of 1980s. For the Neumann boundary value problem, it is not until [23] established by C. Kenig, F. Lin and Z. Shen

[^0]in 2013 that there was no significant progress on this topic. Recently, a new method has been introduced in [2,27] by S. Armstrong and Z. Shen to arrive at the sharp regularity estimates, uniformly down to the microscopic scale, without smoothness assumptions, for Dirichlet and Neumann problems in periodic or non-periodic settings. Meanwhile T. Suslina [31,32] derived the sharp $O(\varepsilon)$ convergence rate in $L^{2}(\Omega)$ for elliptic systems with either Dirichlet or Neumann boundary conditions in a $C^{1,1}$ domain.

Inspired by these papers, we originally investigated some uniform regularity estimates for the elliptic operator with rapidly oscillating potentials that is

$$
\mathfrak{L}_{\varepsilon}\left(u_{\varepsilon}\right)=-\Delta u_{\varepsilon}+\frac{1}{\varepsilon} \mathcal{W}(x / \varepsilon) u_{\varepsilon}+\lambda u_{\varepsilon}=F \quad \text { in } \Omega
$$

where \mathcal{W} is referred to as the rapidly oscillating potential term (see [5, p. 93]). As we have shown in [34], the operator $\mathfrak{L}_{\varepsilon}$ is only a special case of $\mathcal{L}_{\varepsilon}$, and therefore indicates that our results are not very trivial as it seems to be.

Returning to this paper, neither the well-known compactness methods nor the new developed technique is rigidly used. Instead we try to make full use of the previous work in [23]. On account of these results, we mainly establish the uniform $W^{1, p}$ estimates $(1<p \leq \infty)$, as well as the L^{2} convergence rates for more general elliptic systems with the Neumann boundary condition in homogenization theory. More precisely, we consider the following operators depending on parameter $\varepsilon>0$,

$$
\mathcal{L}_{\varepsilon}=-\operatorname{div}[A(x / \varepsilon) \nabla+V(x / \varepsilon)]+B(x / \varepsilon) \nabla+c(x / \varepsilon)+\lambda I
$$

where $\lambda \geq 0$ is a constant, and $I=\left(e^{\alpha \beta}\right)$ is an identity matrix.
Let $d \geq 3, m \geq 1$, and $1 \leq i, j \leq d$ and $1 \leq \alpha, \beta \leq m$. Suppose that $A=\left(a_{i j}^{\alpha \beta}\right), V=\left(V_{i}^{\alpha \beta}\right)$, $B=\left(B_{i}^{\alpha \beta}\right), c=\left(c^{\alpha \beta}\right)$ are real measurable functions, satisfying the following conditions:

- the uniform ellipticity condition

$$
\begin{equation*}
\mu|\xi|^{2} \leq a_{i j}^{\alpha \beta}(y) \xi_{i}^{\alpha} \xi_{j}^{\beta} \leq \mu^{-1}|\xi|^{2}, \quad \text { for } y \in \mathbb{R}^{d}, \text { and } \xi=\left(\xi_{i}^{\alpha}\right) \in \mathbb{R}^{m d}, \text { where } \mu>0 \tag{1.1}
\end{equation*}
$$

(The summation convention for repeated indices is used throughout.)

- the periodicity condition

$$
\begin{align*}
& A(y+z)=A(y), \quad V(y+z)=V(y), \quad B(y+z)=B(y), \quad c(y+z)=c(y), \\
& \text { for } y \in \mathbb{R}^{d} \text { and } z \in \mathbb{Z}^{d} ; \tag{1.2}
\end{align*}
$$

- the boundedness condition

$$
\begin{equation*}
\max \left\{\|V\|_{L^{\infty}\left(\mathbb{R}^{d}\right)},\|B\|_{L^{\infty}\left(\mathbb{R}^{d}\right)},\|c\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\right\} \leq \kappa_{1}, \quad \text { where } \kappa_{1}>0 \tag{1.3}
\end{equation*}
$$

- the regularity condition

$$
\begin{equation*}
\max \left\{\|A\|_{C^{0, \tau}\left(\mathbb{R}^{d}\right)},\|V\|_{C^{0, \tau}\left(\mathbb{R}^{d}\right)}\right\} \leq \kappa_{2}, \quad \text { where } \tau \in(0,1) \text { and } \kappa_{2}>0 \tag{1.4}
\end{equation*}
$$

https://daneshyari.com/en/article/4609336

Download Persian Version:

https://daneshyari.com/article/4609336

Daneshyari.com

[^0]: π The research was supported by the National Natural Science Foundation of China (Grant No. 11471147). E-mail address: xuqiang09@lzu.edu.cn.

