Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate

E. Francini ${ }^{\text {a }}$, C.-L. Lin ${ }^{\text {b }}$, S. Vessella ${ }^{\text {a }}$, J.-N. Wang ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Universitá di Firenze, Italy
${ }^{\text {b }}$ National Cheng Kung University, Taiwan
${ }^{\text {c }}$ National Taiwan University, Taiwan

Received 21 September 2015; revised 27 July 2016
Available online 20 August 2016

Abstract

In this paper, we would like to derive a quantitative uniqueness estimate, the three-region inequality, for the second order elliptic equation with jump discontinuous coefficients. The derivation of the inequality relies on the Carleman estimate proved in our previous work [5]. We then apply the three-region inequality to study the size estimate problem with one boundary measurement.

© 2016 Elsevier Inc. All rights reserved.

Keywords: Carleman estimate; Three-region inequalities; Discontinuous coefficients; Size estimate

1. Introduction

In this work we aim to study the size estimate problem with one measurement when the background conductivity has jump interfaces. A typical application of this study is to estimate the size of a cancerous tumor inside an organ by the electric impedance tomography (EIT). In this case, considering discontinuous medium is typical, for instance, the conductivities of heart, liver,

[^0]intestines are $0.70(\mathrm{~s} / \mathrm{m}), 0.10(\mathrm{~s} / \mathrm{m}), 0.03(\mathrm{~s} / \mathrm{m})$, respectively. Previous works on this problem assumed that the conductivity of the studied body is Lipschitz continuous, see, for example, [3, 4]. The first result on the size estimate problem with a discontinuous background conductivity was given in [18], where only the two dimensional case was considered. In this paper, we will study the problem in dimension $n \geq 2$.

The main ingredients of our method are quantitative uniqueness estimates for

$$
\begin{equation*}
\operatorname{div}(A \nabla u)=0 \quad \Omega \subset \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

Those estimates are well-known when A is Lipschitz continuous. The derivation of the estimates is based on the Carleman estimate or the frequency function method. For $n=2$ and $A \in L^{\infty}$, quantitative uniqueness estimates are obtained via the connection between (1.1) and quasiregular mappings. This is the method used in [18]. For $n \geq 3$, the connection with quasiregular mappings is not true. Hence we return to the old method - the Carleman estimate, to derive quantitative uniqueness estimates when A is discontinuous. Precisely, when A has a $C^{1,1}$ interface and is Lipschitz away from the interface, a Carleman estimate was obtained in [5] (see [11-13] for related results). Here we will derive three-region inequalities using this Carleman estimate. The three-region inequality provides us a way to propagate "smallness" across the interface (see also [12] for similar estimates). Relying on the three-region inequality, we then derive bounds of the size of an inclusion with one boundary measurement. For other results on the size estimate, we mention [1] for the isotropic elasticity, [15-17] for the isotropic/anisotropic thin plate, [7,6] for the shallow shell.

2. The Carleman estimate

In this section, we would like to describe the Carleman estimate derived in [5]. We first denote $H_{ \pm}=\chi_{\mathbb{R}_{ \pm}^{n}}$ where $\mathbb{R}_{ \pm}^{n}=\left\{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R}: y \gtrless 0\right\}$ and $\chi_{\mathbb{R}_{ \pm}^{n}}$ is the characteristic function of $\mathbb{R}_{ \pm}^{n}$. Let $u_{ \pm} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and define

$$
u=H_{+} u_{+}+H_{-} u_{-}=\sum_{ \pm} H_{ \pm} u_{ \pm}
$$

hereafter, $\sum_{ \pm} a_{ \pm}=a_{+}+a_{-}$, and

$$
\begin{equation*}
\mathcal{L}(x, y, \partial) u:=\sum_{ \pm} H_{ \pm} \operatorname{div}_{x, y}\left(A_{ \pm}(x, y) \nabla_{x, y} u_{ \pm}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{ \pm}(x, y)=\left\{a_{i j}^{ \pm}(x, y)\right\}_{i, j=1}^{n}, \quad x \in \mathbb{R}^{n-1}, y \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

is a Lipschitz symmetric matrix-valued function satisfying, for given constants $\lambda_{0} \in(0,1]$, $M_{0}>0$,

$$
\begin{equation*}
\lambda_{0}|z|^{2} \leq A_{ \pm}(x, y) z \cdot z \leq \lambda_{0}^{-1}|z|^{2}, \forall(x, y) \in \mathbb{R}^{n}, \forall z \in \mathbb{R}^{n} \tag{2.3}
\end{equation*}
$$

and

https://daneshyari.com/en/article/4609351

Download Persian Version:

https://daneshyari.com/article/4609351

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: francini @math.unifi.it (E. Francini), cllin2@mail.ncku.edu.tw (C.-L. Lin), sergio.vessella@dmd.unifi.it (S. Vessella), jnwang@ ntu.edu.tw (J.-N. Wang).

